机器人技术是一门研究机器人的科学,也是一门融合了工程科学和工程技术的跨学科领域。机器人技术可能是一个有趣的新研究领域,并且能够有效地发展,因为机器人在各个领域(包括工业、研究实验室甚至家庭)的应用越来越多。机器人在人类难以操作的危险和风险较大的场所和情况下最有用,例如核电站、炸弹拆除或矿井作业。此外,使用机器人通常比使用人类更便宜、更简单,尤其是对于某些职位。本文详尽讨论了机器人的分类、机器人的主要部件以及机器人技术在当今世界的应用,以便在工业中减少人为干扰。此外,了解机器人的基本设计和方法也很重要。
中国人民解放军战略支援部队 (SSF) 已建立了专门满足军队太空态势感知 (SSA) 需求的新基地。i 战略支援部队的第 26 号基地(西安卫星跟踪控制中心)和北京航天飞行控制中心将继续为中华人民共和国 (PRC) 的国家卫星执行卫星遥测、跟踪和控制 (TT&C) 功能,而第 37 号基地将负责外国太空物体的识别、跟踪和分析,包括提高中华人民共和国国内太空物体目录的准确性。1,2,3 第 37 号基地可能与美国太空部队的 Delta 4 和 6 的混合体最为相似,它还可以确定为作战人员提供支持的解放军卫星是否受到来自太空的自然或人为干扰。新基地将提高解放军向联合部队提供来袭弹道导弹以及太空物体位置、机动和作战环境预警的能力。
鉴于电力在现代数字经济中发挥着日益重要的作用,它必须可靠、有弹性、价格合理且安全。虽然向电气化交通未来的转变将增加电力需求,但自然和人为干扰对电网的威胁也在增加,转向更清洁、间歇性电力来源(如太阳能和风能)的趋势也在增加。北美可靠性公司在其 2022 年夏季可靠性评估中警告称,预计“北美大部分地区的气温将高于正常水平”,这将威胁到电力系统的可靠性,尤其是当与更恶劣的天气事件、干旱和野火相结合时,这些事件也是预期中的,以及其他人为威胁。1 美国国家海洋和大气管理局也预测飓风季节将高于平均水平。2 因此,评估还敦促电网运营商预测“夏季高峰期能源短缺风险增加或高风险”,并做好准备,尽可能降低这些风险。
印度是世界上第三大鱼类生产国,总产量为17.4 mmt,并拥有跨越8,000公里的巨大海岸线,以及广泛的河流,水库,河口,河口,湖泊,湖泊,水箱,坦克和池塘的网络。渔业和水产养殖仍然是粮食,营养和收入的重要来源,该行业为超过2800万人提供了生计,特别是在该国沿海和农村地区,并通过出口鱼类和相关产品为63,969千万卢比贡献了63,969千万卢比的收入。此外,鱼是一种负担得起的蛋白质和必需微量营养素的重要来源,可应对民众的营养不良挑战。在这种情况下,必须确保渔业资源的长期可持续性和韧性在过度捕捞,栖息地退化,人为干扰和气候变化的压力中增加。印度渔业部门多年来逐渐进行了改造,并成为国家社会经济提升的重要工具。在这个全球气候变化时代,保护和可持续使用各种渔业资源是一个挑战。这种场景要求科学兄弟会讨论和指导印度渔业和水产养殖以实现可持续的蓝色经济。
来自主要部委和科研机构的 100 多名合格专家(其中包括 30 名科学博士)参与了《国家气候变化减缓行动计划》的制定。《国家行动计划》是与国际组织密切合作制定的,代表了塔吉克斯坦政府在执行《联合国气候变化框架公约》方面的政策优先事项。《国家行动计划》由 12 个部分组成,其中包含有关气候变化科学基础、人为压力、气候变化对自然资源、经济和公共卫生的不利影响以及应对气候变化的措施的信息。本《国家行动计划》的重要目标是为应对措施提供基本信息,这些措施将满足《联合国气候变化框架公约》第 2 条的目标,即稳定大气中温室气体的浓度,以防止对气候系统造成危险的人为干扰。《国家行动计划》在一系列涉及政府组织、大众媒体和国际专家的国家研讨会上进行了讨论。在《国家行动计划》的制定过程中,对所有意见和建议进行了彻底的分析和阐述。我们要感谢塔吉克斯坦共和国政府、全球环境基金、联合国开发计划署、联合国气候变化框架公约秘书处为国家行动计划的制定提供技术指导和资金。国家行动计划的作者
人的可靠性比飞机系统的可靠性低得多,对人类在执行重复性任务时所犯错误数量的测量表明,他们犯错误的概率是 10 − 2 ,如果考虑到人体工程学标准并提供执行任务的特定培训,这个概率可以降低到 10 − 3 ,按照人类的标准,这个概率很低,但比飞机系统故障所需的概率高得多,飞机系统故障的概率必须在 10 − 5 到 10 − 9 范围内(FAA,1988)。因此,人是航空系统中最薄弱的环节,与飞机上装载的计算机代码不同,计算机代码的执行方式总是完全相同,人类非常灵活,他们的可靠性变化很大,身体或情绪障碍会随着时间的推移影响他们的表现;在同一次飞行中,飞行员的表现可能会因为睡眠不足或疲劳而发生变化,同样,在飞行员的职业生涯中,他的表现可能会暂时受到情绪问题的影响,或者永久受到心理和生理能力下降的影响,这可能导致其执照暂时或永久被吊销。自商业航空诞生以来,这些人为干扰就已被发现;八十年前,Meier-Müller (1940a,b) 首次对航空事故原因进行了认真的分析,结果表明约 70% 的事故是由于人为失误造成的,这一数值多年来一直保持不变,如 Lautman & Gallimore (1987) 所示;Helmreich & Foushee (1993)
自主实验已成为加速材料发现速度的有效方法。尽管自主合成仪器在分子和聚合物科学、混合材料溶液处理和纳米颗粒领域已变得流行,但用于物理气相沉积的自主工具的例子却很少,但对半导体行业却很重要。在这里,我们报告了一种自主工作流程的设计和实施,用于溅射沉积具有受控成分的薄膜,利用由 Python、光发射光谱 (OES) 和贝叶斯优化算法定制控制的高度自动化溅射反应器。我们将通过 X 射线荧光测量的薄膜成分建模为在 N 2 和 Ar 气氛中从元素 Zn 和 Ti 靶共溅射期间监测的等离子体发射线的线性函数。由 OES 提供信息的贝叶斯控制算法通过最小化所需和测量的光发射信号之间的绝对误差来导航溅射功率空间以制造具有用户定义成分的薄膜。我们通过自主制造 Zn x Ti 1 − x N y 薄膜验证了我们的方法,这些薄膜与目标阳离子成分的偏差相对为 ± 3.5%,即使对于 15 纳米的薄膜也是如此,这表明所提出的方法可以可靠地合成具有特定成分的薄膜,并且人为干扰最小。此外,所提出的方法可以扩展到更困难的合成实验,其中等离子体强度线与压力呈非线性关系,或者元素粘附系数与基板温度密切相关。
1998 年 7 月 26 日至 8 月 26 日,使用自动相机在格陵兰岛东部陆地栖息地拍摄海象 (Odobenus rosmarus)(位于 Young Sund,北纬 740 15’ 30”,西经 20° 18’ 00”)。这项研究的目的是 (1) 确定使用延时摄影记录海象栖息地的可行性,以及 (2) 确定格陵兰岛仅有的两个陆地栖息地之一的海象栖息地数量,海象经常在那里上岸。在研究期间,每隔六个小时拍摄一张照片,地点是海象通常上岸的 Sandøen 南端。平均而言,经验丰富的海象观察者通过分析照片获得的数量估计值比经验不足的观察者高 16%。7 月 26 日,研究人员在现场共计计数了 28 只海象,而根据当天晚些时候拍摄的照片估计最多只有 16 只。7 月 29 日的最大数量为 18 只。8 月 5 日之前,上岸的数量大幅减少。目前尚不清楚这种下降是代表自然行为还是对人为干扰的反应。可以推断,使用自动相机对花絮进行登记是可行的,前提是 (1) 相机放置得足够高,以确保可以检测到一群花絮中的所有花絮,并且 (2) 进行一些现场直接计数以验证摄影登记的准确性。
城市化可以分离人口并限制分散,从而导致遗传多样性减少和增加遗传分化。我们在乳草的专家草食昆虫中检验了这一假设,认为较高的分散能力会减轻城市化对遗传漂移和基因流的负面影响,并且这些影响会随城市规模而变化。在这项研究中,我们从多伦多,加拿大多伦多的城市和农村地区及其周围五个城市收集了383种乳草昆虫。使用DDRADSEQ,我们为君主生成了145,000个SPN,甲虫的10,000个SNP,象鼻虫的6,000个SNP来量化遗传多样性,人口统计学历史和人口遗传结构。con to我们的假设,我们的结果表明城市化或分散能力对多样性或遗传分化没有影响。遗传多样性(以π的速度)在各种物种的0.0013和0.0044之间变化,没有城市与农村成分,但与甲虫和象鼻虫相比,君主的多样性高于2 x。类似地,遗传差异通常很低,f在0.01到0.28之间变化,但对于三种物种中的任何一个中的任何一个,城市与农村样本之间均无一致的趋势。然而,人口统计分析显示,所有三个采样物种的有效人口规模始终下降,始于过去1000年的最后一次冰川最大值,并增强。我们的发现表明,城市化和扩散能力并不是减少基因流量或增加米尔比远的Herbivo us昆虫种群中遗传漂移的主要因素。相反,自上次冰川最大值以来的历史事件,例如气候变化,一般来说,大规模的人为干扰对人口统计学产生了更明显的影响。这些结果突出了在城市化背景下研究人群遗传学时,考虑自然和人为长期历史过程的综合作用的重要性。
费城地区收到一项提案,提议修改宾夕法尼亚州全州综合减灾储备措施,设立一个新的湿地和溪流补偿缓解站点,以获得联邦和州许可。本通知旨在征求公众对下述工作的意见和建议。发起人:First Pennsylvania Resource,Resource Environmental Solutions, LLC 的子公司收件人:凯瑟琳·沃尔夫女士 317 East Carson Street, Suite 242 Pittsburgh, Pennsylvania 15219 水道和位置:提议的储备站点(“站点”)位于宾夕法尼亚州安德烈亚斯 18211 宾夕法尼亚大道与冷泉巷交叉口西北约 1,000 线性英尺处。该站点完全位于斯库尔基尔县西宾夕法尼亚镇内。该站点面积约为 56 英亩,包括常年和间歇性溪流(包括马霍宁溪);沼泽森林、矮灌木丛和新生湿地;高地森林;和田地(以前/现在用于农业)。该地点位于特拉华河流域内。纬度和经度:40.774924, -75.848512 目的和拟议工作:发起人提议设计、建造和运营马霍宁溪缓解银行(“银行”)。该银行的目的是为导致不可避免地影响美国水域(包括银行指定服务区内的湿地和溪流)的项目提供场外第三方补偿缓解。该地点有被人为干扰的历史。航拍图像显示,至少从 1930 年代末开始,马霍宁溪附近就发生了干扰。导致水生资源退化的活动包括挖沟、筑坝、侵蚀和沉积、水生栖息地破碎化、洪泛区断开和河岸缓冲区的移除。