从进展看,特斯拉居首,且从芯片、数据训练、大模型到本体制造、运控模型均自研自产,25年已制定千台量 产目标。其次为英伟达,其具备强大的算力能力+数据训练平台优势,利用微软芯片、数据、大模型、开发平 台,为人形机器人公司打造底层开发生态,已与14家人形公司合作。其次为Google,从放弃本体聚焦机器人 大模型,到再次牵手机器人公司合作下一代人形机器人,具备大模型能力。 OpenAI目前通过投资和自己小规模 研发机器人本体,尚未All in。苹果和Meta目前专注机器人细分感知领域,平台推出机器人感知系统ARMOR 可用于机械臂,Meta此前收购Digit触觉传感器团队。
摘要 - 为了使人形机器人能够在共有的环境中稳健地工作,多接触运动不仅在四肢(例如手脚),而且在四肢的中间区域(例如膝盖和肘部)的中间区域进行接触。我们开发了一种实现这种全身多接触运动的方法,该运动涉及人形机器人在中间区域的接触。可变形的板状分布式触觉传感器安装在机器人四肢的表面上,以测量接触力,而无需显着改变机器人体形。较早开发的多接触运动控制器(专门用于肢体接触)扩展以处理中间区域的接触,并且机器人运动通过反馈控制稳定,不仅使用力/扭矩传感器,还可以使用分布式的触觉传感器来稳定。通过对Dynamics模拟的验证,我们表明,开发的触觉反馈提高了全身多接触运动的稳定性,以防止干扰和环境错误。此外,寿命大小的人形RHP kaleido展示了全身多接触运动,例如向前走,同时通过前臂接触支撑身体,并在坐着的姿势和大腿接触中平衡姿势。
训练补偿动力不匹配的三角洲(残留)动作模型。然后用Delta动作模型集成到模拟器中,以ASAP微调进行预训练的策略,以有效地与现实世界动力学对齐。我们在三种转移方案中尽快评估了ISAACGYM到Isaacsim,Isaacgym到Genesis和Isaacgym,以及真实世界的G1人类人体机器人。我们的方法显着提高了各种动态运动的敏捷性和全身协调,与Sysid,DR和Delta动力学学习基准相比,跟踪误差减少了。尽快实现了以前难以实现的高度敏捷运动,这证明了在桥接模拟和现实世界动力学中的三角洲动作学习的潜力。这些结果表明,可以开发出更具表现力和敏捷的人形生物的有希望的SIM到真实方向。
摘要 - “您的人形机器人可以做什么?”我们作为机器人主义者在与公众互动时必须回答的最常见问题可能是最常见的问题。通常,这个问题是在熟悉的家庭或办公室环境中构成的,暗示着对不平坦和混乱的地形的强大运动的期望,以及与人,物体和环境的合规互动。的问题暗示了人类机器人在运动计划者实施的一组体现的机车操作技巧的存在,这些技能是在给定相应命令时可检索的。在本文中,我们以有效,模块化和可扩展的运动计划者的形式为该问题提出答案。我们在三种具有挑战性的情况下演示了它的用途,旨在突出机器人的安全操作及其在非结构化环境中的精确运动。此外,我们讨论了从我们在扭矩控制的人形机器人实际实施方面的经验中得出的关键技术。
温带管理和空间的平衡导致平衡功率阶段与每个尺寸的瓦特相关,这会影响电源阶段的体系结构。可能出现的一个问题是,如果功率阶段需要以较高的频率工作。此问题通常存在于MOSFET中,但是与基于MOSFET的系统相比,GAN FET等新技术也可以提高开关性能。对于温度敏感的系统,GAN FET具有较高的理论效率,因为与MOSFET技术相比,切换损耗很小。频率增加会导致需要在MCU中进行其他功能,以支持在高度分辨率下实现更高频率切换所需的所需信号。
Technavio 的“2023-2027 年全球人形机器人市场”研究估计了年平均增长率**数据从每个参与者的网站收集,并经过 Factiva 新闻评论和市场研究中的参与者识别(Technavio、Statista、IDC、Forrester)。人形机器人市场的其他关键研究:Statista 对全球协作机器人市场的研究(2022 年);Insight Partners 对欧洲外骨骼机器人系统市场的研究(2023 年)
- 基础Linux SDK的 - 建立在行业标准框架之上的AI组件 - AI设备之间的简化迁移以获得所需的性能 - Edge AI Studio是评估的常见工具集