文本对视频模型在机器人决策中表现出了实质性的潜力,从而使未来的现实计划以及准确的环境模拟实现了现实计划的想象。但是,此类模型中的一个主要问题是一般化 - 模型仅限于综合视频,但受到与培训时间相似的语言指令约束的视频。这在决策中严重限制,我们寻求一个强大的世界模型来综合对象和行动的不显示的计划,以便在新环境中解决以前看不见的任务。为了解决此问题,我们介绍了Robodreamer,这是一种通过分配视频生成来学习组成世界模型的创新方法。我们利用语言的自然组成性将说明解析为一组低级原始词,我们调节一组模型以生成视频。我们通过允许我们制定新的自然语言教学作为先前看到的组成部分的组合来说明这种分解如何自然地实现组成的重新化。我们进一步展示了这样的分解如何使我们能够添加附加的多模式目标,从而使我们能够指定一个我们希望同时给定自然语言指令和目标图像生成的视频。我们的AP-PRACH可以成功地合成RT-X中看不见的目标的视频计划,在仿真中成功执行机器人,并且在视频生成方面实质上优于单片基线方法。
在过去的几年中,光摄影学(PPG)的利用率有了显着的激增,这是监测心血管指标的最常用的生物信号之一。这可以归因于其在提供方便,非侵入性和连续测量中的显着潜力,例如心率(HR)[1],动脉血压(ABP)[2] [2],血液氧气饱和(SPO 2)[3]和呼吸率(RR)[4] [4]。具有上述优势,PPG传感器已成为多种应用方案中的有价值工具,并且已嵌入到各种设备中,尤其是可穿戴设备中。Diverse types of PPG devices have been designed to monitor users' health conditions, including pulse oximeters (e.g., Innovo Deluxe Fingertip pulse oximeter), smartwatches (e.g., Apple Watch Series 9), rings (e.g., Amovan Nova Ring), and even scarves (e.g., Manchester City
在线工具有意义的活动,并表示希望拥有在线和面对面选项的愿望。一些参与者描述了在限制期间参加各种在线社交团体活动的参与,例如参加“通过Zoom参加Zumba课程”(P6)。随着限制的逐渐缓解,其中一些活动仍在网上继续进行。p14说:“我们曾经每月进行一次讲座,他们再也没有回到面对面。从那以后一直在线。”许多参与者享受这些在线机会提供的便利,尤其是在特殊情况下正如P4所说:“下雨或10度时,我不可能在公园里做瑜伽”。P5说:“这对人有帮助