控制器等方面提出了工效学设计要求。 从国外组织来看,国外涉及船舶驾驶室操控界面的标准主要包括:国际海事组织IMO 于2000 年制定的标准《船桥设备和布局的工效学指南》( MSC/ Circ.982 ) [16] ,内容涉及船桥(包括驾驶室)布置、 作业环境、工作站布置、报警、控制界面、信息显示、 交互控制等7 个方面的驾驶室人机界面设计要求。国际海上人命安全公约SOLAS 于2007 年制定的标准《船桥设计、设备布局和程序》( SOLAS V/15 ) [17] , 内容涉及驾驶室功能设计、航海系统及设备设计、布置、船桥程序等,其显着特点是对于驾驶室团队管理作出相关要求,包括船桥程序、船员培训等。 从各个国家来看,美、英等西方国家在军事系 统工效学方面的研究已具有较大的规模,也制定了 一系列军用标准。美国军方军事系统的人机工程学设计准则包括“ 人机工程系统的分析数据” ( MIL.H.sl444 ) [118] , “ 军事系统人机工程学设计准则” ( MIL.STD.1472F ) [19] ,以及1999 年修订的“ 人机工程过程和程序标准” ( MIL.STD.46855A ) [20] 。 MIL-STD-1472 的第一版发布于20 世纪60 年代( 1968 年),在第二次世界大战期间,当时各交战国竞相发展新的高性能武器装备,但由于人机界面设计上的不合理,人难以掌握这些新性能的武器,导致发生了许许多多事故。因此,二次大战结束后,首先美国陆航部队(以后成为美国空军)和美国海军建立了工程心理学实验室,进行了大量的控制器、显示器等的人因素研究,获得了大量的数据,并开始将这些研究成果汇编成手册或制订成各种有关人类工程学的标准或规范。 MIL-STD-1472 就是在这样的时代背景下产生 的。该标准是为军用系统、子系统、设备和设施制定通用人类工程学设计准则,由美国陆军、海军和空军等多个单位评审,美国国防部批准,并强制性要求美国国防部所有单位和机构使用,具有较广泛的影响。 该标准在控制 - 显示综合和控制器章节有针对控制器 通用设计规则的阐述。 美国在船舶人机工程领域的投入力度也较大,不但开展了一系列的船舶人机工程专项试验,而且颁布了多项船舶人机工程设计标准和文件,主要侧重于研究人机环境对船舶的战斗力的影响。其中, ASTMF 1166—88 海军系统装备和设施的人因素工程设计标准是一个通用型标准,涵盖了控制、显示和告警、楼梯和台阶、标识和计算机、工作空间布局等海军设计的所有元素[21 ] 。 英国国防部于2005 年组织建立的船舶SRDs 系统,对船舶人机界面涉及的多方面问题进行梳理和整合,将人机界面研究作为船舶系统设计的一个重要环节,以提高人机界面设计在船舶项目中的优先级别。 英国国防部 2009 年的 MARS 项目计划,将早期人机 界面设计干预纳入到舰艇设计系统中,并委任专业公
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
1 室 反应堆系统技术 2 室 反应堆物理与计算科学 3 室 核设施退役与放射性废物管理 4 室 核燃料与核能 核燃料与材料 5 室 核热工水力学 6 核安全7 处 辐射防护处 8 辐射利用与仪器仪表处 9 量子工程与核聚变处 10 核电站建设与运行技术处 11 核政策、人力资源与合作处 12 核仪器仪表与控制、人机工程与自动遥测(核工业与自动化) C,人为因素和自动远程系统)
工程与科学 • 计算机科学高级课题 • 航空航天工程 • AI 提示工程 • 人工智能 - 一种负责任的方法 • 天体物理学 • 汽车工程 • 生物医学工程 • 化学工程 • 计算机科学 • 刑事与法医学 • 网络安全 • 设计思维与快速原型 • 数据科学与机器学习 • 生态与环境科学 • 工程 - 基于麻省理工学院项目的介绍 • 工程基础 • 麻省理工学院工程基础 • 游戏开发 • 地理与技术 • 人机工程 • 海洋生物学 • 海洋科学与生态学 • 机械工程 • 开源软件工程 • 物理与量子计算 • 机器人技术 • 空间计算 • 用户体验设计 • Web 开发
人机系统专家:在人机工程、人机系统集成或相关领域接受过专门培训或具有相关经验的合格专业人员,确保在整个系统设计和开发过程中充分识别和解决人机系统考虑因素。人体系统专家通常拥有人为因素、人体系统集成、工业工程、安全、心理学、生理学或相关领域的高级学位或证书。从业者还可以通过专业人体工程学认证委员会 (BCPE) 获得专业认证。人体系统专家可能是专门从事特定人体系统集成领域的从业者(例如,人为因素工程师、安全工程师、培训系统开发人员或人力规划师)。
这项工作将作为第二年中心创新基金奖项目继续进行,旨在提高视觉保真度并在模拟中包含其他功能。与 Samuel Lawrence (XI) 团队、天体材料和研究探索科学 (ARES) 小组合作,为场地制作提供意见,并提供来自月球勘测轨道器 (LRO) 的最新权威数字高程地图。这与基于 SPICE 的插件相结合,该插件可以在模拟中设置日期/时间特定的星历表,并能够交换着陆器、探测车、工具和设备等地面资产,将有助于在任何拟议的感兴趣地点创建尽可能准确的环境。ARGOS 中的人机工程测试运行将用于改进混合现实界面与模型平台的性能并定义培训程序。
问题:复杂空军武器系统的组成部分是系统的重要组成部分。如果人员配备或系统的人机工程等工作杂乱无章,系统的效率就会降低,执行系统任务的成本就会上升,操作和维护系统的人员甚至可能会处于危险之中。为了防止发生此类错误,并确保空军系统从人的角度设计良好,正在开发的系统要经过称为人员子系统测试和评估 (PSTE) 的过程。PSTE 的目的是检查各种人员子系统元素(例如,人体工程学、定性和定量人员需求信息、培训设备)在系统开发的各个阶段(I、II 和 III 类测试)的充分性。原则上,PSTE 过程应确保系统从人为因素的角度得到良好设计。在实践中,PSTE 并不总是有效的。其中一个原因是 PSTE 通常集中在系统开发过程的后期(例如,II 类测试)。到这个时候,系统设计已经冻结,以至于更改成本极高且耗时。当存在安全问题或培训程序的修改似乎可行时,通常每天进行更改。另一个原因是,用于进行 PSTE 的测量工具通常仅限于访谈、清单和问卷。这些方法无法产生关于人类在系统环境中表现的非常好的数据。因此,研究问题是开发一些客观衡量人类在系统环境中表现的 STE 技术。此外,必须证明这些技术在现场系统测试练习中使用时可能会影响系统设计。为此,必须在设计完全固定之前的情况下应用这些技术,并且它们必须产生令人信服的足够数据来说服设计工程师、测试官员和系统计划办公室 (SPG) 人员进行设计和/或程序更改。