抽象目的 - 本文旨在描述无人母舰平面和感应无人机的机械方面。提出的概念系统显示了基于SAE Aero Design竞争中获得的经验来设计不同尺寸和客观系统的想法和可能的方法。设计/方法论/方法 - UAS基于SAE Aero Design竞赛设计和制造的母舰,该竞赛转换为经过改装的高耐力平台,最多可以启动六个小型船舶。描述了设计和转换母舰的过程。提出了选择和计划无人机的结构或硬件的方法。发现 - 一个关键的发现是,可以实现一组小型感应多动物的母舰平面的概念。此外,系统的模块化构建提供了适应当前现有的无人飞机以转换为所描述的母舰平面的可能性。实践含义 - 进行战斗测试并研究遇到问题。无人空中系统(UAS)概念的呈现,可用于扫描区域并创建3D地图以进行搜救任务以及农业应用。独创性/价值 - 本文描述了设计由母舰平面和传感无人机组成的UA的概念方法。本文突出了使用这种UAS获得的潜在解决方案。重点是提出一种技术和系统,该技术和系统可以在广泛且难以在到达领域中进行实时观察。
摘要 无人机系统 (UAS) 的加速发展导致需要将 UAS 集成到作战中,有时会产生意想不到的结果。特别是对于特种作战部队来说,侦察、监视和深度精确打击仍将是主要任务,而使用无人机对于这些任务来说变得至关重要。无论是直接行动、目标安全、部队近距离保护、图像情报 (IMINT) 近距离火力支援、机动还是战斗补给,UAS 都可以覆盖大量潜在任务。然而,在将 UAS 集成到军事行动中时,最有趣的发展是其对决策过程、人为因素与人工智能之间的平衡以及部队结构设计的影响。
• 飞机的垂直距离(高度、海拔)以英尺(ft)表示 • 障碍物的高度以米(m)表示 • 导航、空域预留标绘和 ATC 分离的距离以海里(nm)表示 • 较短的距离以米(m)和千米(km)表示(当高度等于或超过 5000 米时) • 质量以千克(kg)和克(g)表示(当质量小于 1kg 时) • 速度以节(kt)表示 o 注意:低于 50kt 的速度也可以米/秒(m/s)表示
表格表 表 1:第 1 卷封面................................................................................................................ 13 表 2:第 1 卷修改记录.................................................................................................... 14 表 3:现场调查评估....................................................................................................... 30 表 4:飞行前组装和功能检查。 ................................................................ 32 表 5:第 2 卷封面 .......................................................................................................... 35 表 6:第 2 卷修订记录 ................................................................................................ 36 表 7:UA 物理特性描述 ............................................................................................. 38 表 8:UA 性能特性描述 ............................................................................................. 39 表 9:UAS 环境限制描述 ............................................................................................. 39 表 10:UA 构造描述 ............................................................................................. 40 表 11:UA 电力系统描述 ............................................................................................. 41 表 12:UA 推进系统描述 ............................................................................................. 43 表 13:UA 燃油系统描述 ............................................................................................. 44 表 14:UA 飞行控制系统描述 ................................................................................ 45 表 15:UA 导航系统描述 ............................................................................................. 47 表 16:DAA 系统描述 ............................................................................................. 48 表 17:CU 描述 ............................................................................................................. 49 表 18:C2链路描述 ................................................................................................................ 51 表 19:通信描述 ...................................................................................................... 52 表 20:起飞和着陆机制描述 ...................................................................................... 53 表 21:紧急恢复和安全系统描述 ................................................................................ 54 表 22:外部照明描述 ...................................................................................................... 55 表 23:有效载荷描述 ...................................................................................................... 57 表 24:地面支持设备描述 ............................................................................................. 58 表 25:维护描述 .............................................................................................................59 表 26:备件采购说明 ...................................................................................................... 60
图表目录 图 1:组织结构图。 ................................................................................................................ 16 图 2:识别功能危害、故障模式和缓解措施的 10 步法。 ...................................................................................................... 63 图 3:安全风险评估流程 ...................................................................................................... 71 表格目录 表 1:第 1 卷封面 ............................................................................................................. 13 表 2:第 1 卷修订记录 ...................................................................................................... 14 表 3:现场调查评估。 ...................................................................................................... 30 表 4:飞行前组装和功能检查。 ............................................................................................. 32 表 5:第 2 卷封面 ............................................................................................................. 35 表 6:第 2 卷修订记录 ............................................................................................................. 36 表 7:UA 物理特性描述 ................................................................................................ 38 表 8:UA 性能特性描述 ................................................................................................ 39 表 9:UAS 环境限制
完整文档审查和更新。纳入完整 CAP 722 文档系列审查中的缩写和术语,引入第 16 条:模型飞机俱乐部和协会框架内的 UAS 运营,并与 UAS 实施条例 (EU) 2019/947 的新可接受合规方式和指导材料保持一致,该条例保留于《2018 年欧洲联盟(退出)法案》下(并在英国国内法中进行了修订)。
战争史上充斥着一个国家有效和创新地利用技术取得胜利的例子。创新引发了军事战争的革命,当前的世界秩序正通过无人机系统 (UAS) 的使用经历一场非常深刻和迅速的革命,无论是在纳戈尔诺-卡拉巴赫(阿塞拜疆-亚美尼亚)等常规冲突中,还是在当前的俄罗斯-乌克兰冲突中,还是在阿富汗的非常规“全球反恐战争”中。无人机系统的创新和协同使用一直是现代冲突的决定性因素。因此,现代部队必须具备反无人机系统能力,这将重新定义战争的未来。本文讨论了无人机系统的未来作用,分析了其战术、作战和战略影响,评估了其脆弱性,并确定了未来战争对反无人机系统 (C-UAS) 能力的需求,提出了一种适用于印度的 C-UAS 理念、方法、杀伤链和可行方法。
战争史上充斥着一个国家有效和创新地利用技术取得胜利的例子。创新引发了军事战争的革命,当前的世界秩序正通过无人机系统 (UAS) 的使用经历一场非常深刻和迅速的革命,无论是在纳戈尔诺-卡拉巴赫(阿塞拜疆-亚美尼亚)等常规冲突中,还是在当前的俄罗斯-乌克兰冲突中,还是在阿富汗的非常规“全球反恐战争”中。无人机系统的创新和协同使用一直是现代冲突的决定性因素。因此,现代部队必须具备反无人机系统能力,这将重新定义战争的未来。本文讨论了无人机系统的未来作用,分析了其战术、作战和战略影响,评估了其脆弱性,并确定了未来战争对反无人机系统 (C-UAS) 能力的需求,提出了一种适用于印度的 C-UAS 理念、方法、杀伤链和可行方法。
战争史上充斥着一个国家有效和创新地利用技术取得胜利的例子。创新引发了军事战争的革命,当前的世界秩序正通过无人机系统 (UAS) 的使用经历一场非常深刻和迅速的革命,无论是在纳戈尔诺-卡拉巴赫(阿塞拜疆-亚美尼亚)等常规冲突中,还是在当前的俄罗斯-乌克兰冲突中,还是在阿富汗的非常规“全球反恐战争”中。无人机系统的创新和协同使用一直是现代冲突的决定性因素。因此,现代部队必须具备反无人机系统能力,这将重新定义战争的未来。本文讨论了无人机系统的未来作用,分析了其战术、作战和战略影响,评估了其脆弱性,并确定了未来战争对反无人机系统 (C-UAS) 能力的需求,提出了一种适用于印度的 C-UAS 理念、方法、杀伤链和可行方法。
战争史上充斥着一个国家有效和创新地利用技术取得胜利的例子。创新引发了军事战争的革命,当前的世界秩序正通过无人机系统 (UAS) 的使用经历一场非常深刻和迅速的革命,无论是在纳戈尔诺-卡拉巴赫(阿塞拜疆-亚美尼亚)等常规冲突中,还是在当前的俄罗斯-乌克兰冲突中,还是在阿富汗的非常规“全球反恐战争”中。无人机系统的创新和协同使用一直是现代冲突的决定性因素。因此,现代部队必须具备反无人机系统能力,这将重新定义战争的未来。本文讨论了无人机系统的未来作用,分析了其战术、作战和战略影响,评估了其脆弱性,并确定了未来战争对反无人机系统 (C-UAS) 能力的需求,提出了一种适用于印度的 C-UAS 理念、方法、杀伤链和可行方法。