摘要 20 世纪末,美国国家航空航天局 (NASA) 参与了无人机系统 (UAS) 的研究和开发,以支持独特的科学任务。为了完成这些计划中的任务,NASA 开发了专门定制的飞行测试程序和技术。在过去十年中,通过执行大量 UAS 飞行测试任务,NASA 学到了很多关于如何规划和进行 UAS 地面和空中测试的知识,操作各种 UAS,从大型(第 5 组):NASA RQ-4“全球鹰”(诺斯罗普·格鲁曼公司)(美国弗吉尼亚州福尔斯彻奇)高空长航时无人机和 NASA MQ-9“Ikhana”(通用原子航空系统公司(GA-ASI)(美国加利福尼亚州波威)无人科学研究飞机系统)到中小型(第 3 组和第 2 组):NASA X-56 多用途技术试验台(洛克希德·马丁臭鼬工厂)(美国马里兰州贝塞斯达);NASC RQ-23 TigerShark-XP™(Navmar 应用科学公司(NASC)(美国宾夕法尼亚州沃明斯特)无人机车辆等。对于将UAS纳入美国国家空域系统(NAS)的研究案例,NASA开发了包含有人机和无人机的脚本和非脚本遭遇,以及模拟(虚拟)交通遭遇,甚至通过模拟研究了将自主性融入UAS的发现和规避要求。本文将详细探讨
1.0 简介 1 – 1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.1 目的 1 – 1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.2 概述 1 – 1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.3 范围、优先级和限制 1 – 1 。。。。。。。。。。。。。。。。。。。。。。。。。1.3.1 范围 1 – 1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>........1.4 如何使用文档 1 – 1 ...< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...1.5 如何使用标准关系数据库 1 – 1 .。。。。。。。。 < /div>....1.6 定义和缩写 1 – 1 .....。。。。。。。。。。。。。。。。。。。。。。。。..1.6.1 人为因素/人体工程学 1 – 1 ......... div>................. div>.......1.6.2 人体工程学 1 – 2 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.3 人-系统集成 1 – 2 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.4 人机系统 1 – 2 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.5 人机界面 1 – 2 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.6 人机界面 1 – 3 .。。。。。。。。。。。。。。。。。。。。。。...........1.6.7 界面语言 1 – 3 ............。。。。。。。。。。。。。。。。。。。。。。。。.....1.6.8 宜居性 1 – 3 ...............。。。。。。。。。。。。。。。。。。。。。。。。...........1.6.9 人体测量学 1 – 3 ............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.10 生物力学 1 – 3 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.11 生理学 1 – 3。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.12 心理学 1 – 4。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.13 社会因素 1 – 4。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1.6.14 职业健康(工业医学) 1 – 4。。。。。。。。。。.........1.6.15 环境 1 – 4 .............。。。。。。。。。。。。。。。。。。。。。。。。.............2.0 适用文件 2 – 1 ..........。。。。。。。。。。。。。。。。。。。。。。。。.....2.1 参考文件 2 – 4 .....................................3.0 人体测量学和生物力学 3 – 1 .。。。。。。。。。。。。。。。。。。。。。。。。。3.1 简介 3 – 1 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>....3.2 一般人体测量学和生物力学相关设计考虑 3 – 1 . < /div>.........。。。。。。。。。。。。。。。。。。。。。。。。.....3.3 普通体质测量学和生物力学相关设计数据 3 – 1 ...... < /div>..........。。。。。。。。。。。。。。。。。。。。。。。。...... div>......3.3.1 身体尺寸3 – 1 。。。。。。。。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.3.1.1 简介 3 – 1 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>3.3.1.2 机身尺寸设计考虑因素 3 – 1 ...... div>................. div>......3.3.1.3 主体尺寸数据设计要求 3 – 1 ...........。。。。。。。。。。。。。。3.3.2 关节运动 3 – 13 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.3.2.1 简介 3 – 13 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...3.3.2.2 关节运动设计考虑因素 3 – 13 ........ div>.................3.3.2.3关节运动数据设计要求 3 – 14 ...... < /div>..............3.3.2.3.1 单关节的关节运动数据设计要求 3 – 14 .3.3.2.3.2 两个关节的关节运动数据 设计要求 3 – 17 ..3.3.3 REACH 3 – 18 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3.3.3.1 简介 3 – 18 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..............3.3.3.2 REACH 设计考虑因素 3 – 18 .........。。。。。。。。。。。。。。。。。。。。。。。3.3.3.3 REACH数据设计要求 3 – 18 ....................。。。。。
人工智能是当今最受争议的话题之一,而对于人类智能和人工智能之间的异同,人们似乎并没有达成共识。关于可信度、可解释性和道德等许多相关主题的讨论都带有隐含的人类中心主义和拟人化概念,例如,追求类人智能是人工智能的黄金标准。为了达成更多共识并证实未来可能的研究目标,本文提出了关于人类智能和人工智能之间异同的三个概念:1)人类智能(和人工智能)的基本限制,2)人类智能是多种可能的通用智能形式之一,3)多种(集成)形式的窄带混合人工智能应用的巨大潜在影响。目前,人工智能系统的认知品质和能力与生物系统有着根本的不同。因此,一个最突出的问题是,我们如何才能尽可能有效地使用(并“合作”)这些系统?对于哪些任务和在什么条件下,决策可以安全地留给人工智能,什么时候需要人类判断?我们如何才能充分利用人类和人工智能的特定优势?如何有效地部署人工智能系统来补充和补偿人类认知的固有限制(反之亦然)?我们应该追求发展具有人类(水平)智能的人工智能“伙伴”,还是应该更专注于补充人类的局限性?为了回答这些问题,在工作场所或政策制定中使用人工智能系统的人类必须开发一个适当的心理模型,以了解人工智能潜在的“心理”机制。因此,为了获得功能良好的人机系统,应该更加积极地解决人类的智能意识问题。为此,提出了第一个教育内容框架。
24 EA 002 591 作者 -Twelker。Paul A..Ed.;及其他。..教学模拟:研究开发和传播活动,最终报告。俄勒冈州高等教育系统,蒙茅斯。教学研究部。赞助机构 - 教育办公室 (DHEW)。华盛顿。华盛顿特区研究局。报告编号 -R -88 局编号 -BR -7 -1 -045 出版日期 2 月 69 日 拨款 -0EG -1 -7 -0700 -45 -3879 注释 -236p。EDRS 价格 MF -$1.00 11C 111.90 描述符-行为目标。参考书目。反馈、指南、*教学设计、学习动机、学习过程。文献综述、人机系统、测量技术。模型、角色扮演。*模拟环境。*模拟。模拟器。系统方法。*教学方法。职业教育 本报告描述了设计技术。有效应用领域。教育模拟和研究方向。五章内容包括:(1)近期文献综述;(2)模拟领域的概述,包括定义和在教学中使用模拟的一些理由;(3)几个主要模拟中心的设计方法概述和一个包含 13 条用于设计教学模拟系统的具体准则的模型:(4)模拟应用对军事、政府和工业教育的影响分析;(5)模拟器在几个职业教育领域应用的例子;(6)模拟作为评估教育进展和预测复杂人类行为的测量设备的使用说明。附录包含模拟游戏中一些常见独立变量和因变量的列表。四期《教学模拟通讯》。以及 11 条建议的游戏和模拟新方向列表。(JH)
[Hul97a] 将情境感知定义为能够根据用户所处环境感知、解释和响应的计算机系统。 增强认知 要开发信息显示系统,必须研究信息需求,还必须确定呈现信息的最佳方式,以使系统稳健、可用和有效。人类的信息处理能力已迅速成为人机交互的限制因素。这个问题促使了一门名为增强认知(AC)[Kob06a]的新科学学科的发展。AC 的具体关注点是设计方法来检测和减轻人类信息处理的局限性,以及设计解决方案来改善人机系统上的信息交换和使用。 增强现实 根据 [Hic03a],AR 为用户提供可以在现实世界中看到的叠加信息,即它用虚拟信息补充现实世界。AR 通过向视觉、声音、嗅觉或触觉等感官添加信息来改善对自然世界的感知。 AR 是指将来自三维现实环境的信号与用户感知相结合。具体来说,它表示使用眼镜或 HMD(头戴式显示器)将虚拟 3-D 图像与用户对周围世界的自然视觉融合。通过呈现集成在用户环境中的叠加信息,AR 有可能在许多应用领域提供显著的优势。这些优势中的许多都来自于这样一个事实:通过 AR 系统显示的虚拟信号可能超出了物理可见的范围。网络中心战根据 [Dod05a],网络中心战是一种军事理论,旨在通过地理上分散但联系紧密、信息灵通的强大部队网络将信息优势转化为竞争优势。
Nadia Sciacca,Tom Carlson Aspire Create,伦敦大学学院 RNOH,斯坦莫尔,HA7 4LP,英国 电子邮件:{nadia.sciacca.17; t.carlson}@ucl.ac.uk 摘要— 如今,技术为人类提供了许多交流几乎所有事物观点的方式。视觉、听觉和触觉媒体是人类最常用的媒体,它们以如此自然的方式支持交流,以至于我们甚至不会主动考虑使用它们。但是对于那些失去运动或感觉能力的人来说,他们很难或不可能控制或感知这些技术的输出,该怎么办?在这种情况下,也许唯一的交流方式可能是直接使用脑信号。因此,本研究的目标是为四肢瘫痪的人(他们可能被限制在自己的房间或床上)提供一种远程呈现工具,以促进我们许多人认为理所当然的日常互动。在我们的案例中,远程呈现工具是一个远程控制的机器人。它可以作为用户日常生活的一种媒介,通过虚拟方式与位于远程房间或地方的朋友和亲戚联系,或者与不同的环境进行探索。因此,目标是设计一个人机系统,使用户能够仅使用思想来控制机器人。技术部分由脑机接口和视觉界面组成,以实现机器人的“模拟触觉共享控制”。在用户和机器人之间实现共享运动控制,并实现自适应功能分配以管理情况的难度。利用这种“模拟触觉反馈”的控制方案是使用人机合作框架进行设计和评估的,并且已经通过五名参与者评估了这种交互方式的好处。初步结果表明,使用“模拟触觉反馈”的控制和合作比没有“模拟触觉反馈”更好。
Nadia Sciacca,Tom Carlson Aspire Create,伦敦大学学院 RNOH,斯坦莫尔,HA7 4LP,英国 电子邮件:{nadia.sciacca.17; t.carlson}@ucl.ac.uk 摘要— 如今,技术为人类提供了许多交流几乎所有事物观点的方式。视觉、听觉和触觉媒体是人类最常用的媒体,它们以如此自然的方式支持交流,以至于我们甚至不会主动考虑使用它们。但是对于那些失去运动或感觉能力的人来说,他们很难或不可能控制或感知这些技术的输出,该怎么办?在这种情况下,也许唯一的交流方式可能是直接使用脑信号。因此,本研究的目标是为四肢瘫痪的人(他们可能被限制在自己的房间或床上)提供一种远程呈现工具,以促进我们许多人认为理所当然的日常互动。在我们的案例中,远程呈现工具是一个远程控制的机器人。它可以作为用户日常生活的一种媒介,通过虚拟方式与位于远程房间或地方的朋友和亲戚联系,或者与不同的环境进行探索。因此,目标是设计一个人机系统,使用户能够仅使用思想来控制机器人。技术部分由脑机接口和视觉界面组成,以实现机器人的“模拟触觉共享控制”。在用户和机器人之间实现共享运动控制,并实现自适应功能分配以管理情况的难度。利用这种“模拟触觉反馈”的控制方案是使用人机合作框架进行设计和评估的,并且已经通过五名参与者评估了这种交互方式的好处。初步结果表明,使用“模拟触觉反馈”的控制和合作比没有“模拟触觉反馈”更好。
在现实世界中应用人工智能技术时,必须考虑支持人机协作的设计和机制的细节。人工智能辅助人类决策的交互设计的一个关键方面是在更大的决策工作流程中人工智能推理的显示和排序政策。我们对在人工审查手头的诊断任务之前和之后提供人工智能推理的影响了解甚少。我们探讨了在放射学诊断会话开始时提供人工智能辅助与在放射科医生做出临时决定后提供人工智能辅助的效果。我们进行了一项用户研究,其中 19 名兽医放射科医生在人工智能工具的帮助下确定了患者 X 射线图像中的放射学发现。我们采用了两种工作流程配置来分析 (i) 锚定效应、(ii) 人机团队的诊断表现和一致性、(iii) 花费的时间和决策信心,以及 (iv) 对人工智能的感知有用性。我们发现,如果参与者被要求在审查人工智能推断之前登记临时反应,那么无论人工智能的建议是否准确,他们不太可能同意人工智能的建议,而且在与人工智能意见不合的情况下,他们也不太可能寻求同事的第二意见。这些参与者还表示,人工智能的建议不太有用。令人惊讶的是,在展示人工智能推断之前要求对案件做出临时决定并没有延长参与者花在这项任务上的时间。这项研究为在人机系统中部署临床人工智能工具提供了可推广和可操作的见解,并介绍了一种研究人机协作替代设计的方法。我们将实验平台作为开源平台提供,以促进未来研究替代设计对人机工作流程的影响。
转发空军技术研究所(AFIT)研究活动提供了双重目的结果:有价值的教育经验,以增强毕业生在整个职业生涯中的表现,以及对赞助商的重要解决方案。AFIT与来自许多空军和国防部组织的研究赞助商紧密合作,以确定与我们的教师专业知识和教育要求相匹配的高利益问题,以最大程度地提高价值。AFIT的自主与导航技术中心,网络空间研究中心,指导能源中心,运营分析中心,空间研究与保证中心,技术情报研究与研究中心,核技术中心的核专业知识是我们许多研究计划的焦点。其他研究小组正在处理改变游戏规则的技术,包括超为人工,人机系统,数据科学和添加剂制造应用。AFIT通过科学测试和分析技术测试和评估中心为超过50多个主要的收购计划提供建议,以提高测试资源的有效性。新的咨询工作包括探索对空军核心任务的多域方法。AFIT的研究计划支持USAF和USSF。与空军研究实验室,国家空气和太空情报中心,空军生命周期管理中心,美国运输司令部以及许多其他组织和运营社区的战略合作伙伴关系最大程度地提高了我们研究计划对国防需求的贡献。我们的教职员工还与全国大学的研究人员进行合作,以促进各种学科的最先进。AFIT与商业企业合作,以确保通过合作研发协议(CRADAS)及时将新技术转移给美国行业。本研究报告每年准备,以总结AFIT的重大贡献;为了征求我们的空中和太空部队,国防部和其他联邦合作伙伴的持续参与和支持;并鼓励新的赞助商参加AFIT的研究计划。AFIT欢迎新的机会参与我们的客户,教职员工和学生共同感兴趣的研究项目。其他信息可从https://www.afit.edu/enr/获得。Heidi R. Ries,工程与管理研究生院博士院长
1。Jacobs,S.,McAllister,R.,Gillo,K.,Cook,R.,Wolf,T.,Hassani,P.,Ulbrich-Baker,J.,Mapa,D.,Adkins,D.,Adkins,N.,McDonald,D.,Chen,C.机器人与自动化杂志,2024年10月(如果:5.4)。2。Yerebakan,M。O.,Gu,Y.,Gross,J。,Hu,B。,“人类与动物协作过程中生物力学和心理工作量的评估”,《人为因素》,00187208241254696,2024年5月(如果:2.9)。3。Pooley,A.,Gao,M.,Sharma,A.,Barnaby,S.,Gu,Y.,Gross,J。,“通过霍克启发的群体相互作用分析无人机热飙升能量管理”,生物学,8(1),124; 2023年3月(如果:3.7)。4。Kilic,C.,Gu,Y.,Gross,J。,“在感知降级的外星环境中,行星流浪者的本体感受性滑移检测”,Field Robotics。2,1754–1778。doi:0.55417/fr.2022054。2022年8月。5。Chen,Y.,Yang,C.,Gu,Y.,Hu,B。,“移动机器人对批发和零售贸易环境中人类安全感知和系统生产力的影响:一项试点研究,“ IEEE对人机系统系统的交易,2022年5月(如果:3.4)。6。Kilic, C., Martinez, B., Tatsch, C., Beard, J., Strader, J., Das, S., Ross, D., Gu, Y., Pereira, G., Gross, J., “NASA Space Robotics Challenge 2 Qualification Round: An Approach to Autonomous Lunar Rover Operations,” IEEE Aerospace and Electronic Systems Magazine, Dec 2021 (IF: 1.6).7。8。9。Yang,C.,Strader,J.,Gu,Y。,“基于地图匹配的合作定位的可扩展框架”,传感器,9月2021年(如果:3.6)。Hedrick,G.,Gu,Y。,“火星样本返回流浪者的地形遍历遍历计划”,高级机器人技术,2021年7月(如果:1.7)。史密斯(T.
