瑞典医学伦理委员会 Smer 于 2015 年对 CRISPR 技术进行了更新。除其他事项外,该委员会还与遗传工程委员会和国会议员和研究人员协会 Rifo 一起在国会举办了一场研讨会,讨论该技术及其用于编辑人类基因组的可能性。 Smer随后就此问题组织了多次研讨会。该委员会的各种出版物也讨论了基因编辑问题。鉴于该领域的快速发展,Smer 决定于 2019 年秋季制作一份报告,深入描述知识状态并分析人类基因编辑引发的伦理问题,包括遗传给后代的变化和不会遗传的变化。该报告的目标是为未来的监管和实践提供基础并激发社会辩论。报告还提出了一些建议,旨在创造条件利用基因编辑技术的潜力,为人类健康、功能能力和生活质量做出贡献,同时管理该技术可能给个人、特定群体和整个社会带来的潜在风险。
摘要虽然斑马鱼正在成为研究人类疾病的新模型系统,但仍缺乏一种有效的方法来产生高效率的精确点突变。在这里,我们表明基本编辑者可以在没有其他不必要的靶向突变的情况下生成具有高效率的C-T点突变。此外,我们还建立了一个新的编辑变体,以识别NAA原始探针相邻基序,从而扩大了斑马鱼中的基本编辑可能性。使用这些方法,我们首先在CTNNB1基因中产生了基本变化,模仿了已知的人类基因的突变,从而导致内源性Wnt信号传导的组成型激活。此外,我们精确地针对了包括癌症相关的几个基因,包括CBL。使用了最后一个目标,我们创建了一个新的斑马鱼矮人模型。一起,我们的发现扩大了斑马鱼作为模型系统的潜力,允许新的方法调节细胞信号通路和人类遗传疾病相关突变的精确模型的生成。
摘要转录因子p53是最著名的肿瘤抑制剂,但其同胞p63是表皮发育的主要调节剂,也是鳞状细胞癌(SCC)中的关键致癌驱动器。尽管有多种基因表达研究,但报告的p63依赖性基因的重叠有限,因此很难破译p63基因调节网络。尤其是在研究中对p63响应元件的分析有很大不同。为了解决这种复杂的数据情况,我们提供了一个综合资源,该资源能够评估对任何感兴趣的人类基因的p63依赖性调节。我们结合广泛的CHIP-SEQ数据结合使用了一种新型的迭代基序搜索方法,以实现p53和p63结合位点,识别基序和潜在的共同因素之间的精确全球区别。我们将这些数据与增强子:基因关联整合在一起,以预测p63靶基因,并确定代表预后和治疗干预候选者的SCC中通常取消调节的基因。
摘要 虽然斑马鱼正在成为研究人类疾病的新模型系统,但仍然缺乏高效产生精确点突变的有效方法。在这里,我们展示了碱基编辑器可以高效地产生 C 到 T 的点突变,而不会产生其他不必要的靶向突变。此外,我们建立了一种识别 NAA 原型间隔区相邻基序的新编辑器变体,扩展了斑马鱼的碱基编辑可能性。利用这些方法,我们首先在 ctnnb1 基因中产生了碱基变化,模仿已知会导致内源性 Wnt 信号组成性激活的人类基因致癌突变。此外,我们精确靶向了包括 cbl 在内的几种癌症相关基因。利用最后一个目标,我们创建了一种新的斑马鱼侏儒症模型。我们的研究结果共同扩展了斑马鱼作为模型系统的潜力,为内源性调节细胞信号通路和生成人类遗传疾病相关突变的精确模型提供了新方法。
摘要:基于基因组学的精确医学概念在人类基因组项目的完整后开始出现。与循证医学相反,精密医学将使医生和科学家可以量身定制对特异性疾病易感性不同或对特定治疗的反应性不同的患者的不同亚群的治疗。目前提出了当前的精密医学模型,以将患者精确分类为共享疾病的生物学基础的亚组,以实现更有效的量身定制治疗,以提高结果。精确医学已成为象征新医学时代的术语。在这篇综述中,我们研究了精密医学的历史,发展和未来观点。我们还讨论了精密医学和相关领域的概念,原理,工具和应用。在我们看来,要精确医学,需要实现两个基本目标。首先,需要将疾病分类为各种子类型。第二,必须适用于每种特定疾病亚型的靶向疗法。因此,我们将此评论集中在实现这两个目标的进度上。
本文旨在扫描有关人类基因组测序的有力医学文献,该文献主要由1990年始于1990年的国际倡议人类基因瘤(PGH)进行,在科学世界中具有很大的意义。完整的测序仅在20年后由私人倡议端粒到居组(T2T)完成。人类基因组的知识提出了道德和社会问题,要求创建道德,法律和社会影响研究计划(ELSI)。多年的研究要求创建新技术以及不存在的科学领域,例如个性化医学,包括药物基因组学,这些药物直接影响了与每个人的遗传特征相关的疾病的诊断和治疗。我们用作研究引擎,Scielo,PubMed,Google学术,科学直接,虚拟健康图书馆(BVS)以及国家人类人类基因组研究所(NHGR),自然,开放科学杂志自然和博士学位审查,通过描述者,通过人类的基因瘤,治疗,伦理,测序,实现科学的知识。但是,仍然涉及较高的财务成本,这在广泛使用它们方面遇到了困难。
摘要 囊性纤维化是一种致命的遗传性疾病,由 cftr 基因的不同突变引起,该基因编码位于大多数上皮细胞中的氯离子通道。这种蛋白质的异常功能会导致浓稠粘液的形成,从而阻塞相关器官,其中受影响最严重的是肺和胰腺。以前,这种疾病的治疗主要集中于改善症状。由于对这种疾病的分子基础认识的进步,目前已经有了旨在改善蛋白质缺陷或纠正潜在突变的治疗方法。然而,目前尚未找到彻底治愈的方法,为此,人们正在研究应用 CRISPR/Cas9 系统的基因组编辑潜力。然而,在将任何研究应用于临床目的之前,必须就规范人类基因编辑的伦理标准达成国际共识。摘要 囊性纤维化是一种由不同的非xen cftr突变引起的致命遗传性疾病,它编码位于大多数上皮细胞中的氯离子通道。这种蛋白质的异常功能会导致浓稠粘液的形成,从而阻塞相关器官,其中受影响最严重的是肺和胰腺。以前,这种疾病的治疗主要集中于改善症状。由于对这种疾病的分子基础认识的进步,目前已经有了旨在改善蛋白质缺陷或纠正潜在突变的治疗方法。然而,目前尚未找到彻底治愈的方法,为此,人们正在研究利用 CRISPR/Cas9 系统的基因编辑潜力。然而,在将任何研究用于临床目的之前,必须就规范人体细胞使用的道德标准达成国际共识。摘要 囊性纤维化是一种致命的遗传性疾病,由 cftr 基因的不同突变引起,该基因编码位于大多数上皮细胞中的氯离子通道。这种蛋白质的异常功能会导致浓稠粘液的形成,从而阻塞相关器官,其中受影响最严重的是肺和胰腺。以前,这种疾病的治疗主要集中于改善症状。由于对这种疾病的分子基础认识的进步,目前已经有针对性的治疗方法来改善蛋白质缺陷或纠正潜在的突变。然而,目前尚未找到彻底治愈的方法,为此,正在研究应用 CRISPR / Cas9 系统的基因组编辑潜力。然而,在将任何研究应用于临床之前,必须达成一项有关规范人类基因编辑的伦理规范的国际协议。关键词:囊性纤维化、CFTR 蛋白、CRISPR/Cas9、基因编辑。
1。Wang,d。,Tai,P.W.L。 和gao,g。 (2019)腺相关病毒载体作为基因治疗递送的平台。 nat Rev Drug Discov 18,358-378。 2。 Jay,F.T。,Lughlin,C.A。 和Carter,B.J。 (1981)真核转化控制:腺相关的病毒蛋白合成受腺病毒DNA结合蛋白突变的影响。 Proc Natl Acad Sci U S A 78,2927-2931。 3。 Srivastava,A。,Lusby,E.W。 和Berns,K.I。 (1983)腺苷相关病毒2基因组的核苷酸序列和组织。 J Virol 45,555-564。 4。 Johnson,F.B。,Ozer,H.L。 和Hoggan,M.D。 (1971)腺病毒相关病毒的结构蛋白3. J Virol 8,860-863。 5。 Rose,J.A。,Maizel,J.V。,Inman,J.K。 和Shatkin,A.J。 (1971)腺病毒相关病毒的结构蛋白。 J Virol 8,766-770。 6。 Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。 和Heck,A.J。 (2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。 J Am Chem Soc 136,7295-7299。 7。 xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。 和Chapman,M.S。 (2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。 Proc Natl Acad Sci U S A 99,10405-10410。 8。 和Agbandje-Mckenna,m。Wang,d。,Tai,P.W.L。和gao,g。(2019)腺相关病毒载体作为基因治疗递送的平台。nat Rev Drug Discov 18,358-378。2。Jay,F.T。,Lughlin,C.A。 和Carter,B.J。 (1981)真核转化控制:腺相关的病毒蛋白合成受腺病毒DNA结合蛋白突变的影响。 Proc Natl Acad Sci U S A 78,2927-2931。 3。 Srivastava,A。,Lusby,E.W。 和Berns,K.I。 (1983)腺苷相关病毒2基因组的核苷酸序列和组织。 J Virol 45,555-564。 4。 Johnson,F.B。,Ozer,H.L。 和Hoggan,M.D。 (1971)腺病毒相关病毒的结构蛋白3. J Virol 8,860-863。 5。 Rose,J.A。,Maizel,J.V。,Inman,J.K。 和Shatkin,A.J。 (1971)腺病毒相关病毒的结构蛋白。 J Virol 8,766-770。 6。 Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。 和Heck,A.J。 (2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。 J Am Chem Soc 136,7295-7299。 7。 xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。 和Chapman,M.S。 (2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。 Proc Natl Acad Sci U S A 99,10405-10410。 8。 和Agbandje-Mckenna,m。Jay,F.T。,Lughlin,C.A。和Carter,B.J。(1981)真核转化控制:腺相关的病毒蛋白合成受腺病毒DNA结合蛋白突变的影响。Proc Natl Acad Sci U S A 78,2927-2931。3。Srivastava,A。,Lusby,E.W。和Berns,K.I。(1983)腺苷相关病毒2基因组的核苷酸序列和组织。J Virol 45,555-564。4。Johnson,F.B。,Ozer,H.L。 和Hoggan,M.D。 (1971)腺病毒相关病毒的结构蛋白3. J Virol 8,860-863。 5。 Rose,J.A。,Maizel,J.V。,Inman,J.K。 和Shatkin,A.J。 (1971)腺病毒相关病毒的结构蛋白。 J Virol 8,766-770。 6。 Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。 和Heck,A.J。 (2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。 J Am Chem Soc 136,7295-7299。 7。 xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。 和Chapman,M.S。 (2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。 Proc Natl Acad Sci U S A 99,10405-10410。 8。 和Agbandje-Mckenna,m。Johnson,F.B。,Ozer,H.L。和Hoggan,M.D。(1971)腺病毒相关病毒的结构蛋白3.J Virol 8,860-863。5。Rose,J.A。,Maizel,J.V。,Inman,J.K。 和Shatkin,A.J。 (1971)腺病毒相关病毒的结构蛋白。 J Virol 8,766-770。 6。 Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。 和Heck,A.J。 (2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。 J Am Chem Soc 136,7295-7299。 7。 xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。 和Chapman,M.S。 (2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。 Proc Natl Acad Sci U S A 99,10405-10410。 8。 和Agbandje-Mckenna,m。Rose,J.A。,Maizel,J.V。,Inman,J.K。和Shatkin,A.J。(1971)腺病毒相关病毒的结构蛋白。J Virol 8,766-770。6。Snijder,j。,van de Waterbeemd,m。,Damoc,e。,Denisov,e。,Grinfeld,d。,Bennett,A。,Agbandje-McKenna,M。,Makarov,A。和Heck,A.J。(2014)通过Orbitrap质谱定义了病毒和细菌纳米颗粒的化学计量和货物负荷。J Am Chem Soc 136,7295-7299。7。xie,q。,bu,w。,bhatia,s。,hare,j。,somasundaram,t。,azzi,a。和Chapman,M.S。(2002)腺相关病毒(AAV-2)的原子结构,人类基因治疗的载体。Proc Natl Acad Sci U S A 99,10405-10410。8。和Agbandje-Mckenna,m。Govindasamy,L。,Padron,e。,McKenna,R.,Muzyczka,n。,Kaludov,n。,Chiorini,J.A。(2006)在结构上绘制腺相关病毒血清型4的多种表型。J Virol 80,11556-11570。9。tse,l.v。,Klinc,K.A。,Madigan,V.J。,Castellanos Rivera,R.M。,Wells,L.F。,Havlik,L.P。,Smith,J.K。和Asokan,a。(2017)结构引导的抗原不同的腺相关病毒变体用于免疫逃避。Proc Natl Acad Sci U S 114,E4812-E4821。10。Chan,K.Y。,Jang,M.J。,Yoo,B.B.,Greenbaum,A。Chan,K.Y。,Jang,M.J。,Yoo,B.B.,Greenbaum,A。
图 1 人类与非人类物种之间共享的基因。系统发育树标注了每个物种中具有 1:1 直系同源物的人类基因百分比(以数字和每个圆圈的填充比例显示)。与人类共享的 1:1 直系同源物的绝对数量绘制为每个圆圈的颜色。使用 orthogene R 包构建。92 关键词:Anolis carolinensis,绿变色蜥;Bos taurus,牛;Caenorhabditis elegans,蛔虫;Canis lupus familiaris,狗;Danio rerio,斑马鱼;Drosophila melanogaster,果蝇;Equus caballus,马;Felis catus,猫;Gallus gallus,鸡;Homo sapiens,人类;Macaca mulatta,恒河猴;Monodelphis domestica,灰色短尾负鼠;小家鼠 (Mus musculus),家鼠;鸭嘴兽 (Ornithorhynchus anatinus),鸭嘴兽;黑猩猩 (Pan troglodytes),黑猩猩;褐家鼠 (Rattus norvegicus),褐家鼠;酿酒酵母 (Saccharomyces cerevisiae),面包酵母;粟酒裂殖酵母 (Schizosaccharomyces pombe),裂殖酵母;野猪 (Sus scrofa),猪;热带爪蟾 (Xenopustropicalis),西方爪蟾。
简介:所有心脏瓣膜的正常发育都需要高度协调的信号通路和下游介体。虽然基因组变体可能导致先天性瓣膜疾病,但环境因素也可以发挥作用。生命瓣膜后期钙化是主动脉瓣狭窄的主要原因,这是一种进行性疾病,可能导致心力衰竭。当前对先天性瓣膜疾病和瓣膜钙化原因的研究正在使用多种高通量方法,包括转录组学,蛋白质组学和基因组学。来自生物知识库的高质量遗传数据对于促进这些高通量数据集的分析和解释至关重要。基因本体论(GO,http://geneontology.org/)是用于解释这些数据集的主要生物信息学资源,因为它提供了描述所有生物体基因产物的作用的结构化,可计算的知识。UCL功能基因注释小组的重点是人类基因产品的注释。确定了转录组,蛋白质组学和基因组数据中包含的GO注释没有提供有关心脏瓣膜开发的精确描述性信息,我们启动了一个集中的项目来解决此问题。