航空电子设备是飞机、人造卫星和航天器上使用的电子系统。航空电子系统包括通信、导航、多个系统的显示和管理,以及安装在飞机上以执行单独功能的数百个系统。1. 飞机航空电子设备1.1 通信通信将驾驶舱与地面以及驾驶舱与乘客连接起来。机上通信由公共广播系统和飞机对讲机提供。甚高频航空通信系统工作在 118.000 MHz 至 136.975 MHz 的航空波段。欧洲每个频道与相邻频道的间隔为 8.33 kHz,其他地区为 25 kHz。甚高频也用于视距通信,例如飞机对飞机和飞机对空中交通管制。使用调幅 (AM),通话以单工模式进行。飞机通信也可以使用 HF(尤其是跨洋飞行)或卫星通信进行。 1.2 导航 导航是指在地球表面或上方确定位置和方向。航空电子设备可以使用卫星系统(如 GPS 和 WAAS)、地面系统(如 VOR 或 LORAN)或两者的任意组合。导航系统会自动计算位置,并在移动地图显示器上将其显示给机组人员。较旧的航空电子设备需要飞行员或导航员在纸质地图上绘制信号交叉点以确定飞机的位置;现代系统会自动计算位置,并在移动地图显示器上将其显示给机组人员。1.3 监控
本书第一版问世至今已有二十年。在此期间,发射人造卫星已成为常态,计算机已成为家喻户晓的物品,数字信息通过通信卫星和光纤在城市和国家之间频繁传输,天文学家发现了黑洞,研究人员学会了操纵单个和小原子群。这些变化对计时和分配艺术以及我们对时间和空间本质的理解产生了深远的影响。在这一新版本中,我试图通过引入六个新章节并对第一版的章节进行大量更改和添加来处理这些问题和许多其他问题。一开始,我以为这本书对普通读者最有用和有趣。在这方面,它提供了一个折衷的,有时我认为过于折衷的介绍,介绍了时间、计时和时间的用途,特别是在科学和技术领域。但我很快发现,我的许多同事偶尔会参考这本书来温习一下。也许这并不奇怪。生成、维护和应用时间和频率技术是一项庞大的事业。虽然第二版并不打算提供深入的教科书式介绍,但我希望它仍然保持科学的完整性,同时继续让普通读者能够理解。最后,在 1988 年,国家标准局 (NBS) 更名为国家标准与技术研究所 (NIST)。在历史上合适的情况下,我指的是 NBS,否则使用当前的名称 NIST。
本书第一版问世至今已有二十年。在此期间,发射人造卫星已成为常态,计算机已成为家喻户晓的物品,数字信息通过通信卫星和光纤在城市和国家之间频繁传输,天文学家发现了黑洞,研究人员学会了操纵单个和小原子群。这些变化对计时和分配艺术以及我们对时间和空间本质的理解产生了深远的影响。在这一新版本中,我试图通过引入六个新章节并对第一版的章节进行大量更改和添加来处理这些问题和许多其他问题。一开始,我以为这本书对普通读者最有用和有趣。在这方面,它提供了一个折衷的,有时我认为过于折衷的介绍,介绍了时间、计时和时间的用途,特别是在科学和技术领域。但我很快发现,我的许多同事偶尔会参考这本书来温习一下。也许这并不奇怪。生成、维护和应用时间和频率技术是一项庞大的事业。虽然第二版并不打算提供深入的教科书式介绍,但我希望它仍然保持科学的完整性,同时继续让普通读者能够理解。最后,在 1988 年,国家标准局 (NBS) 更名为国家标准与技术研究所 (NIST)。在历史上合适的情况下,我指的是 NBS,否则使用当前的名称 NIST。
本书第一版问世至今已有二十年。在这二十年里,发射人造卫星已成为常态,计算机已成为家喻户晓的物品,数字信息通过通信卫星和光纤在城市和国家之间频繁传输,天文学家发现了黑洞,研究人员学会了操纵单个原子和小原子群。这些变化对计时和分配艺术以及我们对时间和空间本质的理解产生了深远的影响。在这个新版本中,我试图通过引入六个新章节并对第一版的章节进行大量更改和添加来处理这些问题和许多其他问题。一开始,我以为这本书对普通读者来说最有用和最有趣。在这方面,它提供了一个折衷的,有时我认为过于折衷的介绍,介绍时间、计时和时间的用途,特别是在科学和技术领域。但很快我就发现,我的许多同事都会不时地参考这本书,温习一下其中的内容。这也许并不奇怪。生成、维护和应用时间和频率技术是一项庞大的事业。虽然第二版并不打算提供深入的教科书式介绍,但我希望它仍然保持科学的完整性,同时继续让普通读者能够理解。最后,在 1988 年,国家标准局 (NBS) 更名为国家标准与技术研究所 (NIST)。在历史上合适的情况下,我指的是 NBS,否则使用当前的名称 NIST。
随着各个科学领域的技术突破,不同国家的科学家构想出了各种太空通信理念。俄罗斯科学家康斯坦丁·齐奥尔科夫斯基 (1857-1935) 是第一个将太空旅行作为一门科学进行研究的人,并于 1879 年提出了火箭方程,该方程至今仍用于现代火箭的设计。他还首次对人造卫星进行了理论描述,并指出了地球同步轨道的存在。但他没有发现地球同步轨道的任何实际应用。著名的德国科学家和火箭专家赫尔曼·奥伯特于 1923 年提出,轨道火箭的机组人员可以通过镜子发送信号与地球上的偏远地区进行通信。1928 年,奥地利科学家赫尔曼·诺登认为地球静止轨道可能是载人航天器的理想位置。1937 年,俄罗斯科学家提出,电视图像可以通过从航天器上反射来中继。 1942-1943 年间,乔治·O·史密斯在《惊人的科幻小说》中发表了一系列文章,其中介绍了一颗人造行星——金星等边行星,当太阳阻挡直接通信时,它充当金星和地球站之间的中继站。然而,电子工程师和著名科幻小说作家亚瑟·C·克拉克通常被认为是现代卫星通信概念的创始人。
Mini-EUSO 是一台于 2019 年在国际空间站上发射的望远镜,目前位于空间站的俄罗斯部分。该任务的主要科学目标是寻找核物质和奇异夸克物质,研究瞬变发光事件、流星和流星体等大气现象,观察海洋生物发光以及人造卫星和人造空间碎片。它还能够观测能量高于 10 21 eV 的超高能宇宙射线产生的广泛空气簇射,并探测地面激光产生的人造簇射。Mini-EUSO 可以在紫外线范围(290 - 430 nm)内绘制夜间地球地图,空间分辨率约为 6.3 公里,时间分辨率为 2.5 秒,通过俄罗斯 Zvezda 模块中面向天底的紫外线透明窗口观察我们的星球。该仪器于 2019 年 8 月 22 日从拜科努尔航天发射场发射,其光学系统采用两个菲涅耳透镜和一个焦面,焦面由 36 个多阳极光电倍增管组成,每个光电倍增管有 64 个通道,总共 2304 个通道,具有单光子计数灵敏度,总视场为 44 ◦。Mini-EUSO 还包含两个辅助摄像头,用于补充近红外和可见光范围内的测量。在本文中,我们描述了该探测器并展示了运行第一年观察到的各种现象。
太空生命科学实验的重要目的之一就是研究重力对生命的影响,因为生命始终受到地球引力的影响。在轨道运行的人造卫星和航天飞机上都进行过这样的实验。为了确定重力本身对轨道的影响,重要的是创造稳定的控制实验环境,其中其他参数(例如宇宙射线和电磁波)尽可能相同,并且只指定重力的影响。在地面实验中很难创造在轨实验条件,但在轨道实验室中创造重力更容易,可以确保更好的对比实验。为了在轨道实验室中创造重力环境,可以通过旋转部件产生离心力来创造重力。旋转直径越大越好,以减少科里奥利力和重力梯度的影响,但航天器可用空间有限。在国际空间站(ISS)的日本实验舱“希望号”中,有一个用于离心生命科学实验的轨道实验设施。该设施通过优化可用的实验室空间,拥有国际空间站中最大的旋转直径之一。该设施可以通过离心力产生小于 1G 的重力,这在地面设施中很难产生,并能长时间保持稳定。该设施还可以模拟相当于月球表面和火星的重力。三菱重工有限公司 (MHI) 开发了带有大型离心机(旋转半径:38 厘米)的实验设施,该设施自 2020 年以来一直在运行。本报告概述了该设施的开发和首次任务。| 1. 简介
本书第一版问世至今已有二十年。在此期间,发射人造卫星已成为常态,计算机已成为家喻户晓的物品,数字信息通过通信卫星和光纤在城市和国家之间频繁传输,天文学家发现了黑洞,研究人员学会了操纵单个和小原子群。这些变化对计时和分配艺术以及我们对时间和空间本质的理解产生了深远的影响。在这一新版本中,我试图通过引入六个新章节并对第一版的章节进行大量更改和添加来处理这些问题和许多其他问题。一开始,我以为这本书对普通读者最有用和有趣。在这方面,它提供了一个折衷的,有时我认为过于折衷的介绍,介绍了时间、计时和时间的用途,特别是在科学和技术领域。但我很快发现,我的许多同事偶尔会参考这本书来温习一下。也许这并不奇怪。生成、维护和应用时间和频率技术是一项庞大的事业。虽然第二版并不打算提供深入的教科书式介绍,但我希望它仍然保持科学的完整性,同时继续让普通读者能够理解。最后,在 1988 年,国家标准局 (NBS) 更名为国家标准与技术研究所 (NIST)。在历史上合适的情况下,我指的是 NBS,否则使用当前的名称 NIST。
本书付印时,美国国家航空航天局 (NASA) 已成立超过半个世纪,其长寿得益于历届总统政府及其所服务的美国人民对其科学和技术专长的重视。在这半个世纪里,飞行速度从超音速发展到轨道速度,喷气式客机成为洲际交通的主要方式,宇航员登陆月球,该机构开发的机器人航天器探索了太阳系的遥远角落,甚至进入了星际空间。NASA 诞生于一场危机——苏联人造卫星在太空领域取得胜利后的混乱局面——它出色地应对了新兴太空时代的挑战。美国宇航局成立十年后,宇航员团队开始筹划首次登月,最终于 1969 年 7 月 20 日由尼尔·阿姆斯特朗迈出“一小步”。很少有事件能像他小心翼翼地从细长的鹰号登月舱中降落,在静海基地尘土飞扬的平原上留下历史性的脚印那样,如此令人感动,如此引人注目或意义重大。在阿波罗计划之后,美国宇航局开始了一系列太空计划,尽管这些计划可能缺乏阿波罗计划那样的情感和引人注目的影响力,但它们的成就和勇气仍然令人瞩目。航天飞机、国际空间站、哈勃太空望远镜以及各种行星探测器、着陆器、探测车和飞越装置都体现了 NASA 的创造力、技术人员的优秀以及对太空科学和探索的奉献精神。但 NASA 还有另一个方面,在 NASA 被普遍称为美国航天局、其最受瞩目的员工是勇敢的宇航员的时代,这个方面往往被隐藏起来
1 背景 自从 1957 年前苏联发射世界上第一颗人造卫星“斯普特尼克”以来,人类的太空活动持续扩展了约 60 年。因此,如今在轨卫星数量约为 8,200 颗(包括那些不再运行的卫星),地球轨道的使用(以下简称“轨道使用”)正处于进一步发展阶段。但与此同时,轨道拥挤和空间碎片(以下简称“碎片”)数量增加已成为一个问题,卫星之间发生碰撞以及看似与碎片相撞的事故。人们还担心,地球轨道的扩大使用,例如引入小型卫星星座,可能会使风险管理、规划和卫星操作更加困难,而使 ASAT、轨道跟踪和其他安全威胁成为可能的技术的出现也是另一个令人担忧的问题。在这种情况下,各种实体一直在国际舞台上解决空间交通协调和管理(STCM)的需求。然而,目前国际层面的太空管制规则主要依赖《外层空间活动长期可持续性准则》等不具法律约束力的准则。此外,传统的太空管制讨论并未充分解决反卫星试验和轨道跟踪等威胁。因此,日本的目标是成为独立的太空强国,因此有必要在制定轨道使用规则方面领先于其他国家,以推动太空管制和负责任外层空间行为的讨论,并帮助制定相关规则和规范。