使用具有参数初始条件的 (3+1) 维混合框架,我们研究了重离子碰撞中已识别粒子(包括介子、K介子、质子和 Lambda 粒子)的快速度相关定向流 v 1 ( y )。考虑了涉及 Au+Au 碰撞的情况,在 √ s NN 下进行,范围从 7.7 到 200 GeV。使用测量的带电粒子伪快速度分布和净质子快速度分布来约束束流方向的动态。在该框架内,介子的定向流由倾斜源的侧向压力梯度驱动,重子的定向流主要由于横向扩展驱动的相对于束流轴的初始不对称重子分布。我们的方法成功地再现了介子和重子的 v 1 快速度和束流能量依赖性。我们发现重子的v 1 ( y )对重子的初始停止有较强的约束力,而定向流与介子的v 1 ( y )一起可以探究有限化学势下致密核物质的状态方程。
我们研究了在 p-Pb 碰撞中由于初始涡量和电磁场的影响而产生的小系统中重夸克的定向流。我们使用相对论传输代码来模拟小系统的体积演化,并使用朗之万动力学研究重夸克动量演化。对于重夸克与体积的相互作用,我们采用了准粒子模型 (QPM)。我们观察到由于电磁场而产生的粲夸克的定向流分裂 (v 1) 较大,这与核-核碰撞中粲夸克的定向流分裂相当。然而,在 p 核碰撞中,由于初始倾斜物质分布而导致的定向流的幅度并不大。由于碰撞系统的不对称性,观察到的定向流并不快度奇数。本文中提出的结果提供了一种独立的方法来量化产生的初始电磁场和小系统中的物质分布。
类型:续订 标题:“强相互作用南部-戈德斯通玻色子的 3D 成像” 首席研究员:赵勇,阿贡国家实验室 联合研究员:丹尼斯·博尔韦格,布鲁克海文国家实验室 彼得·博伊尔,布鲁克海文国家实验室 伊恩·克洛伊特,阿贡国家实验室 高翔,阿贡国家实验室 斯瓦加托·穆克吉,布鲁克海文国家实验室 石琪,布鲁克海文国家实验室 张睿,阿贡国家实验室 科学学科:物理学 INCITE 分配:站点:阿贡国家实验室 机器(分配):HPE Cray EX - 英特尔百亿亿次计算刀片节点(600,000 Aurora 节点小时) 研究摘要:可见宇宙主要由质子和中子组成,它们结合在一起形成原子核,占所有可见物质质量的 99% 以上。然而,如果没有一种名为介子的强相互作用粒子,我们所知的原子核就不会存在,介子在大于质子大小的距离尺度上作为强核力的载体发挥着关键作用。实验研究加上理论上的重大进展表明,质子、中子和介子等强相互作用粒子是由夸克和胶子等基本粒子组成的,它们的相互作用可用量子色动力学 (QCD) 描述。因此,QCD 是原子核形成的原因,因此也是宇宙中几乎所有可见物质形成的原因。通过这个 INCITE 项目,研究人员正在对介子和 K 介子的 3D 结构进行格点 QCD 计算,它们是强相互作用中的南部-戈德斯通玻色子。该团队使用保持手性对称性的格点 QCD 拉格朗日量,旨在确定高动量转移时的电磁形状因子、横向动量相关 (TMD) 波函数和部分子分布函数。这些计算旨在为杰斐逊实验室 (JLab) 12 GeV 升级和未来的电子离子对撞机 (EIC) 等实验项目提供比较和预测。结果将加深对强相互作用和约束的理解,并提供介子和介子的全面 3D 成像。该团队还将利用他们的发现提取用于 TMD 演化的 Collins-Soper 内核,这是从 JLab 和 EIC 实验中对质子 TMD 进行全局分析的关键输入。
2015 年,LHCb 合作组报告在衰变中观察到与粲偶素五夸克态一致的共振态[1]。实际上,衰变成的状态可能具有独特的特征[2]。最小夸克含量可被识别为,即粲偶素五夸克。虽然自夸克模型建立以来就预测了这种由四个夸克和一个反夸克组成的五夸克的存在[3–5],但对它的实验分析却花了很长时间。这种新粒子彻底改变了我们对于奇异状态的理解,这些状态无法包含在标准光谱学的传统夸克-反夸克和三夸克方案中。粲偶素五夸克被标记为,带电荷,并与粲偶素耦合。此外,它们是在重味重子领域观察到的第一个奇异状态。
在光子,原子,超导体,介子,模拟鹰辐射,钻石中的氮气散布中心甚至宏观钻石中观察到。
重味夸克与粲夸克和美夸克一样,是研究高能重离子碰撞中产生的无色介质——夸克胶子等离子体 (QGP) 的灵敏探测器。ALICE 合作组在 √ s NN = 5.02 TeV 的 Pb-Pb 碰撞中测量了奇异和非奇异 D 介子的产生。对 D 介子的椭圆 (v2) 和三角 (v3) 流的测量可以深入了解粲夸克在低横向动量 (pT) 下参与介质集体运动的情况,同时限制了介质内能量损失的路径长度依赖性。此外,利用事件形状工程 (ESE) 技术对非奇异 D 介子椭圆流研究了粲夸克与底层介质中轻夸克的耦合。最后,通过首次测量 LHC 能量下 D0 电荷相关定向流与伪快速度的关系,研究了碰撞早期产生的磁场的影响。
一个常数。这导致了量子海森堡代数的推广,其表现为位置和动量之间的扩展对易关系,即 [ x i , p j ] = i ¯ h (δ i j + βδ i j p 2 + 2 β i j p i p j ),其中 [ x i , x j ] = [ p i , p j ] = 0 [ 6 , 7 ]。这些结果还表明扩展或修改了量子力学的量子非局域性方面。事实上,有人认为,量子非局域性是 HUP 的结果,它代表了量子力学最奇怪的特性之一 [ 8 , 9 ]。这在 [ 10 ] 中已得到详细讨论,并被发现与 Franson 实验 [ 11 ] 中出现的重合率版本一致。已经检测到 GUP 对角动量代数和两个部分系统(量子比特和量子三元组)的贝尔算子的平方及其期望值的影响。违反贝尔不等式可能是制定量子引力的重要工具,而且,Stern-Gerlach 实验的精度限制了 GUP 参数 β 的值。应该强调的是,量子非局域性已经
