当核子被奇异数S = -1的超子(如Λ、Σ)取代时,原子核就转变为超核,从而可以研究超子-核子(Y-N)相互作用。众所周知,二体Y-N和三体Y-N-N相互作用,特别是在高重子密度下,对于理解致密恒星的内部结构至关重要[1,2]。杰斐逊实验室[3]对Λ-p弹性散射和J-PARC[4,5]对Σ−-p弹性散射进行了精确测量,最近获得了新结果,这可能有助于限制中子星内部高密度物质的状态方程。直到最近,几乎所有的超核测量都是利用轻粒子(如e、π+、K−)诱导的反应进行的[6–8],其中从超核的光谱性质来分析饱和密度附近Y-N相互作用。利用重离子碰撞中的超核产生来研究Y-N相互作用和QCD物质的性质是过去几十年来人们感兴趣的主题[9–13]。然而,由于统计数据有限,测量主要集中在轻超核的寿命、结合能和产生产额[12,14,15]。热模型[16]和带有聚结后燃烧器的强子输运模型[17,18]计算预测在高能核碰撞中,特别是在高重子密度下,会大量产生轻超核。各向异性流动通常用于研究高能核碰撞中产生的物质的性质。由于其对早期碰撞动力学的真正敏感性 [19–22],动量空间方位分布的傅里叶展开的一阶系数 v 1 ,也称为定向流,已对从 π 介子到轻核的许多粒子进行了分析 [23– 28]。集体流是由此类碰撞中产生的压力梯度驱动的。因此,测量超核集体性使我们能够研究高重子密度下 QCD 状态方程中的 Y - N 相互作用。在本文中,我们报告了在质心能量 √ s NN = 3 GeV Au+Au 碰撞中首次观测到 3 Λ H 和 4 Λ H 的定向流 v 1。数据由 2018 年在 RHIC 上使用固定靶 (FXT) 装置的 STAR 实验收集。能量为 3.85 GeV/u 的金束轰击厚度为 1% 相互作用长度的金靶,该靶位于 STAR 的时间投影室 (TPC) 入口处 [29]。TPC 是 STAR 的主要跟踪探测器,长 4.2 m,直径 4 m,位于沿束流方向的 0.5 T 螺线管磁场内。沿束流方向每个事件的碰撞顶点位置 V z 要求在目标位置的 ± 2 cm 范围内。
s = 7。8和13 TEV。LHCB [8]宣布发现了另外三个Tetraquark候选人X(4274),X(4500)和X(4700)。不同的作者已经提出了许多模型和方法来研究四方国家。jaffe [9]研究了Quark Bag模型框架中多Quark Hadrons Q 2 2 Q 2的光谱和主要的衰减耦合。在发现J/ Meson后,Iwasaki [10]提出了Tetraquark State T 4 C。Debastiani等。[11]在diquark-antidiquark方法和介子分子中研究了四夸克质量。Chen等。 [12]已经研究了不同J PC状态的diquark-Antidiquark配置中的双重隐藏魅力和底部质量,并且观察到质量高于观察到的自发解离阈值 - 在执行QCD总和时,两个慈善中的自发性解离阈值。 Wang等。 [13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。 在组成夸克模型和QCD总规则的背景下,许多作者[14-18]对双重的tetraquark群众进行了研究。 Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Chen等。[12]已经研究了不同J PC状态的diquark-Antidiquark配置中的双重隐藏魅力和底部质量,并且观察到质量高于观察到的自发解离阈值 - 在执行QCD总和时,两个慈善中的自发性解离阈值。Wang等。 [13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。 在组成夸克模型和QCD总规则的背景下,许多作者[14-18]对双重的tetraquark群众进行了研究。 Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Wang等。[13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。双重的tetraquark群众进行了研究。Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Chakrabarti等。[19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。
