hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
微型和纳米结构的表面受到了广泛的关注,因为它们在传感器技术,表面摩擦学以及依从性和能量收集等广泛应用中的潜力。已经研究了几种修改材料表面,例如血浆处理,离子梁溅射,反应性离子蚀刻和激光处理等材料表面[1-3]。在这些方法中,由于其良好的空间分辨率和对不同材料(例如金属,半导体,介电和聚合物)的良好空间分辨率和高可重现性,激光表面处理近年来引起了人们的兴趣[4-6]。从连续波(CW)到超短梁以及从UV到IR的工作波长已经使用了许多类型的激光源[7-8]。由于激光 - 物质相互作用,从纳米到微尺度的各种结构和模式取决于激光参数和材料特性,例如激光诱导的周期性表面结构(LIPS),2D圆形液滴和特定的微型结构,称为Spikes [9-14]。
金黄色葡萄球菌CAS 9(SACAS 9)是RNA引导的内核ASE,其靶向与原始探针相邻的互补DNA相邻的邻接基序(PAM)进行裂解。其小尺寸促进了体内递送的各种生物体基因组编辑。在此,使用单分子和集合方法,我们系统地研究了SACAS 9与DNA相互作用的基础机理。我们发现SACAS 9的DNA结合和裂解需要分别与指导RNA的PAM -Proximal DNA的6-和18 -bp。这些活性是由三元复合物之间的两个稳定的相互作用介导的,其中一种稳定的相互作用位于PAM的大约6 bp,而不是DNA上Sacas 9的明显足迹。值得注意的是,原始间隔物内部的另一个相互作用显着强,因此构成了DNA结合的SACAS 9持续块对DNA跟踪电动机。有趣的是,在裂解后,萨卡斯9自主释放了pAM-DESTAL DNA,同时保持与PAM的结合。这种部分DNA释放立即废除了其与原始探针DNA的强烈相互作用,因此促进了其随后与PAM的解离。总体而言,这些数据提供了对SACAS 9的动态理解,并指导其有效的应用。
封装在介孔碳 (MC) 中的 Al 掺杂磁铁矿尖晶石纳米粒子被认为是一种有前途的非均相 Fenton 催化剂,可用于实际应用中的连续苯酚降解。在固定床反应器内的工作条件下,制备的 21%γ-Fe 2 O 3 /28%FeAl 2 O 4 @MC 材料中的铁铝尖晶石与 H 2 O 2 发生反应。在该反应中,Al 离子占据了 γ-Fe2O3 组分框架中的空八面体阳离子位,将其转化为 Al 取代的磁铁矿尖晶石。获得的 Fe 3+ 0.66 Fe 2+ 0.33 (Fe 2+ 0.33 Fe 3+ 0.33 Al 3+ 0.33 ) 2 O 4 @MC 中的 Al 通过其路易斯酸特性使铁离子的电子极化,从而使铁离子 (Fe n+(δ+) ) 带上更多的正电荷。这加快了具有挑战性的还原反应 Fe 3+ → Fe 2+ 与 H 2 O 2 生成 HOO˙ 的速度,并加强了尖晶石中铁离子的键合,提高了它们的活性和稳定性。因此,在温和的操作条件下(pH5、40°C、8.6 mlwater/mlcat*h、0.036mol H 2 O 2、200ppm 苯酚),原位生成的催化剂 Fe(Fe 0.66 Al 0.33 ) 2 O 4 @MC 为 35 nm,含有 19.9%Fe 和 2.4%Al,表面积为 335 m 2 /g,在 500 小时的运行中表现出持久的高催化活性和稳定性。在催化性能没有明显变化的情况下,获得了 80% 的 TOC 转化率和处理水中约 1ppm 的浸出 Fe。
摘要:石墨烯是用于改性物理化学表面性质的关键材料。然而,其平坦表面限制了需要高比表面积的应用。可以通过将二维材料集成到三维结构中来克服这一限制。本文介绍了一种石墨烯-介孔锗 (Gr-MP-Ge) 纳米材料的受控合成策略。分别采用双极电化学蚀刻和化学气相渗透对 Ge 基底进行纳米结构化,随后进行 3D 纳米石墨烯涂层。虽然拉曼光谱显示纳米石墨烯的域尺寸可随处理温度而调整,但透射电子显微镜数据证实 Gr-MP-Ge 的结晶度得以保留。X 射线光电子能谱表明,对于 Gr-MP-Ge,碳与 Ge 之间存在非共价键合。最先进的分子动力学建模可以通过自由基的存在更深入地了解合成过程。这种纳米材料的成功合成使得纳米石墨烯可以集成到具有高纵横比和轻重量的三维结构中,从而为这种多功能纳米材料的多种应用开辟了道路。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
线粒体被称为细胞的“动力工厂”,在非癌细胞的能量产生、细胞维持和干细胞调节中发挥着关键作用。尽管线粒体非常重要,但使用药物输送系统靶向线粒体仍面临重大挑战,因为存在多种障碍,包括细胞摄取限制、酶降解和线粒体膜本身。此外,目标器官中的障碍以及由网状内皮系统等生理过程形成的细胞外障碍,会导致用于线粒体药物输送的纳米粒子被快速消除。克服这些挑战导致了各种策略的发展,例如使用细胞穿透肽进行分子靶向、基因组编辑和基于纳米粒子的系统,包括多孔载体、脂质体、胶束和 Mito-Porters。多孔载体由于其孔径大、表面积大和易于功能化而成为特别有前途的药物输送系统候选者,可用于靶向线粒体。根据孔径,它们可分为微孔、中孔或大孔,并根据尺寸和孔隙均匀性分为有序或无序。使用多孔载体靶向线粒体的方法有多种,例如用聚乙二醇 (PEG) 进行表面改性、加入三苯基膦等靶向配体以及用金纳米粒子或壳聚糖覆盖孔隙以实现受控和触发的药物输送。光动力疗法是另一种方法,其中载药多孔载体产生活性氧 (ROS) 以增强线粒体靶向性。功能化多孔二氧化硅和碳纳米粒子的形式取得了进一步的进展,它们已证明具有有效向线粒体输送药物的潜力。本综述重点介绍了利用多孔载体的各种方法,
环状二核苷酸(CDNS)是干扰素基因(STING)途径激动剂的一种刺激剂,已显示出令人鼓舞的结果,可引起针对癌症和病毒感染的免疫反应。然而,常规CDN的次优型药物样特性,包括其短体内半衰期和细胞渗透性差,会损害其治疗功效。在这项研究中,我们开发了一种锰 - 硅纳米平台(MNO X @HMSN),从而通过与Mn 2+协同作用来增强CDN的佐剂效应,以供癌症和SARS-COV-2疫苗接种。MNO X @HMSN具有大室子孔与CDN和肽/蛋白质抗原有效共同载体。mno X @HMSN(CDA)放大了刺激途径的激活,并增强了I型干扰素和其他促炎细胞因子的产生
摘要简介:这项研究的主要目的是确定开发有效KEAP1抑制剂的潜在潜在客户。方法:在当前的研究文章中,已采用了硅内方法来发现潜在的KEAP1抑制剂。3D-QSAR是使用具有IC 50的KEAP1抑制剂的Chembl数据库生成的。选择了最好的药理,以筛选三个不同的文库,即Asinex,Minimaybridge和锌。从数据库中筛选的分子通过可药物性规则和分子对接研究过滤。对接研究后获得的最佳结合分子通过二利方法对测定物理化学性质进行毒性进行。通过分子动态模拟,研究了最佳的命中以在KEAP1腔中进行稳定。结果:分别对不同数据库进行虚拟筛选,并获得了三个导线。这些铅分子asinex 508,minimaybridgehts_01719和锌0000952883在KEAP1腔中显示出最好的结合。铅的结合复合物的分子动态模拟支持对接分析。铅(Asinex 508,minimaybridgehts_01719和锌0000952883)在100 NS模拟的KEAP1结合腔中稳定,平均RMSD值分别为0.100、0.114和0.106 Nm。结论:这项研究提出了三个铅分子作为基于高吞吐量筛查,对接和MD模拟研究的潜在KEAP1抑制剂。这些HIT分子可用于进一步设计和开发KEAP1抑制剂。这项研究提供了用于发现新型KEAP1抑制剂的初步数据。它为药物化学家打开了新的途径,以探索针对KEAP1-NRF2途径的抗氧化剂刺激分子。
摘要:垂直有序的介孔二氧化硅膜(VMSF)是由超毛孔和超薄垂直纳米渠道组成的一类多孔材料,它们在电分析传感器和分子分离的区域具有吸引力。然而,VMSF很容易从碳纤维电极中掉下来,从而影响其广泛的应用。在此,氮化碳纳米片(CNN)作为粘合剂层,可在玻璃碳电极(GCE)上稳定VMSF生长。CNN可以与VMSF的硅烷醇基团共价结合,从而有效地促进了VMSF在GCE表面上的稳定性。受益于VMSF的许多开放纳米孔,用碳水化合物抗原15-3(CA15-3)特异性抗体修改VMSF外表面,可以通过硅胶内部硅含量进行电化学探针的目标传输,从而通过硅胶内部降低敏感性检测到1000的nosion nanochnels,从0.47 mu/mL的检测极限。此外,提出的VMSF/CNNS/GCE免疫传感器能够高度选择性,准确地确定尖峰血清样品中的Ca15-3,该样品提供了一种简单有效的电化学策略,可在复杂的生物学标本中检测各种实用生物标志物。