用于高功率微波应用的介电常数和低损耗 X 波段陶瓷波导窗口”。S.Bashaiah、Pramod K Sharma 和 K.C.James Raju 出席 CODEC 2012,第五届计算机和通信设备国际会议,于 2012 年 12 月 17 日至 19 日在加尔各答无线电物理和电子研究所举行。
该研究由IFN-CNR开发的ERC-STG项目Treat(GAN。101162914)资助。热辐射是能量和熵传输的重要机制,影响了科学和工程的各个方面。然而,由于其随机性,其特征是宽带光谱,缺乏极化和方向性,从而限制了其控制和操纵。治疗旨在通过引入一种通过动态控制热辐射的频谱和动量来设计辐射热传输的方法来应对这些挑战。PH.D计划的重点是研究选定红外热发射器的介电介电常数的时间调节。学生将在中型和Terahertz范围内开发和使用超前的光谱设置,并以飞秒的时间分辨率进行研究,以研究Epsilon-Near-Zero材料的超快光学响应,包括碳化硅,碳化硅,拓扑,拓扑,拓扑,拓扑,拓扑材料,以了解这些材料的主要策略,以了解这些精神上的效果和这些EMERIDEN的效果,并提高这些EMERIDEN和EMERED的效果,并具有EMERER的效果,并且在技术相关环境(温度)中,高频时间调节对介电介电常数。
从介电常数和绝缘破坏电场强度的观点出发选择Al 2 O 3 、HfO 2 、SiO 2 。使用这些绝缘膜制作MOS结构样品,并评估绝缘膜的介电击穿场强和介电常数。为了进行评估,我们使用了新推出的浸入式手动探测器。在该评价中,HfO 2 膜表现出最高的介电常数和击穿电场强度。通过简单的器件模拟,发现如果该膜具有这种水平的特性,则它可以用作氧化镓MOSFET的栅极绝缘膜。因此,在本研究中,我们决定使用该HfO 2 薄膜进行MOSFET的开发。由于不仅需要从初始特性而且还需要从长期可靠性的角度来选择绝缘膜,因此我们还考虑了具有第二好的特性的Al 2 O 3 膜作为候选材料I。取得了进展。 2020财年,我们改进了栅极绝缘膜的材料选择和成膜条件。具体地,对于作为栅极绝缘膜的候选的Al 2 O 3 ,为了减少作为沟道电阻增大的因素的栅极绝缘膜/氧化镓界面处的电荷,将Al 2 O 3 /镓我们考虑在成膜后通过热处理去除氧化物界面。图3示出了(a)评价中使用的MOS结构的截面图和(b)界面态密度分布。确认了通过在N 2 气氛中在450℃下热处理10分钟,可以形成界面能级为1×10 12 eV -1 cm -2 以下的良好界面。可知当温度进一步上升至550℃、650℃、800℃时,产生10 12 eV -1 cm -2 量级的界面态并劣化。通过本研究,我们获得了构建晶体管基本工艺过程中的热处理温度的基本数据。
摘要 - 定量反转算法允许在场景中的每个点构建电性能(例如介电常数和电导率)。但是,由于需要了解场景中的事件波场,因此这些技术在测量的反向散射相历史信号和数据集上都具有挑战性。通常,由于天线特征,路径丢失,波形因子等因素,这是未知的。在本文中,我们引入了一个标量校准因子来解释这些因素。为了解决校准因子,我们通过包括正向问题来增强反转过程,我们通过训练简单的馈送正式完全连接的神经网络来解决这些问题,以学习基本介电常数分布与雷达散射场之间的映射。然后,我们最大程度地减少了测得的和模拟字段之间的不匹配,以优化每个发射器的标量校准因子。我们证明了数据驱动的校准方法在菲涅尔研究所数据集中的有效性,其中我们显示了估计的场景介绍的准确性。因此,我们的论文为在现实成像场景中应用定量反转算法的应用奠定了基础。
• 密封封装价格昂贵(定制)、笨重、占用大量空间 • 传统保形涂层的介电常数会严重影响射频电路性能(不能直接应用于有源元件) • 高频射频和微波设备仅与密封封装兼容或根本没有保护 • 没有可行的替代方案来替代密封封装 • 关键问题:– 射频兼容性 – 环境保护 – 成本效益 – 可扩展性
图2:真空中两个可极化球之间的相互作用力是球形分离的函数d = r - a 1- a 2。两个球体的半径为1 = a 2 = 1。25 nm,携带q 1 = - 1 e和q 2 = - 7 e的中心电荷,介电常数ϵ1 = ϵ2 = 20。黑色曲线:这项工作;橙色点:Ref的基准结果; 42紫色曲线:两个球之间的裸露库仑相互作用。
需要具有适应特性的多孔层,例如,在传感器,执行器和其他具有低介电常数的功能层中,需要进行适应性。化学中,多孔层用于催化剂或过滤。由于多孔材料的内部表面积大,重点是能量转换应用,例如锂离子电池的超级电容器或创新阳极。硅是为此目的的有前途的材料。但是,需要多孔的Si矩阵来补偿充电过程中发生的机械应力和体积膨胀。
先前使用氢水合物通过化学还原获得的RGO的抽象功能化是通过使用静电纺丝技术将其形态转换为纳米纤维的,并将PVA用作聚合物基质。然后使用傅立叶变换红色(FTIR)光谱,扫描电子显微镜(SEM)和UV-VIS分光光度计表征了已形成的RGO纳米纤维。FTIR光谱证实了纳米纤维中C组和C = O组的存在。sem显示了纳米纤维形态的变化,这标志着纤维直径的增加,而空心纤维变得更亮。此外,通过UV-VIS分光光度计证实了RGO浓度对纳米纤维光学特性的影响。根据此特征,由于RGO浓度升高,RGO/PVA纳米纤维的吸光度降低。通过复杂的折射率和介电常数研究了RGO的光学性质的细节,然后使用Kramers-Kronig转换来计算复杂的折射率和复杂的介电常数。从数据中,RGO/PVA纳米纤维的光学性质表明RGO/PVA纳米纤维可以用作有机太阳能电池设备的透明电极。关键字:减少石墨烯氧化石墨烯,纳米纤维,静电纺丝,kramers-kronig,
•ASTM D1169:电绝缘液体特异性电阻(电阻率)的标准测试方法。•DIN 51 111:车辆中电动驱动器的新鲜和使用油的电气性能•ASTM D924:耗散因子(或功率因数)(或功率因子)的标准方法和电气绝缘液体的相对介电(介电常数)•ASTM D1816:使用插电液的标准测试方法,用于使用载液液体的标准测试方法
200-400°C [390-750°F] 7.8 [4.3] 400-600°C [750-1110°F] 8.5 [4.7] 600-800°C [1110-1470°F] 8.8 [4.9] 800-1000°C [1470-1830°F] 9.0 [5.0] 最高空载温度 1650°C 3000°F 介电强度 * 32.6 dc kV/mm 828 V/mil 介电常数 K 1 25°C 300°C 500°C @10MHz 9.53 9.91 10.14 @1000MHz 9.00 - - @8500MHz 9.04 9.32 9.54 耗散因数,tan