一种具有分级介电特性的3D打印成分的当前方法是构建两种空间分离的介电材料的成分。这些不同的材料之间的不同界面可能导致材料的热膨胀不同。另一种技术是将空隙放置在组件中以控制介电常数(即电能分配)。这两种技术通常都会产生机械不稳定的结构,这些结构限制了设备性能,尤其是对于在困难的环境条件下运行的小型卫星和飞机上的RF系统。
关键词:非光定义聚酰亚胺、固化、C&D Track、CascadeTek 烤箱、互连和 GaAs。摘要 化合物半导体行业使用多种材料来制造用于金属互连的层间电介质薄膜。这些材料包括 BCB、聚酰亚胺和硅电介质。在本文中,我们讨论了在 BAE 系统微电子中心 (MEC) 制造工厂的新加工设备上进行的聚酰亚胺薄膜工艺鉴定。这项工作包括对用于聚酰亚胺涂层的新涂层轨道和用于固化聚酰亚胺涂层薄膜的新固化烤箱的鉴定。引言聚酰亚胺薄膜具有低介电常数、高模量和相对较高的热稳定性、化学稳定性和机械稳定性 1, 2 。这些特性使其成为众多半导体和微电子处理应用的有吸引力的候选者。这些应用包括使用聚酰亚胺薄膜作为倒装芯片封装中的钝化层、印刷电路板的基板、多芯片模块沉积电介质封装中的基板、多层金属互连中的电介质夹层等。3 本文讨论了将聚酰亚胺薄膜用于金属互连,因为其介电常数低,可以降低寄生电容。金属互连将集成电路 (IC) 的各个部分电连接起来。互连结构对于现代 IC 制造至关重要。图 1 显示了典型互连结构的横截面。互连由交替的金属层和电介质层制成。这些层经过图案化,形成连接电路 1、2、4 的各个组件的电通路。
高温柔性聚合物电介质对于高密度能量存储和转换至关重要。同时拥有高带隙、介电常数和玻璃化转变温度的需求对新型电介质聚合物的设计提出了巨大的挑战。在这里,通过改变悬挂在双环主链聚合物上的芳香侧链的卤素取代基,获得了一类具有可调热稳定性的高温烯烃,所有烯烃均具有不折不扣的大带隙。聚氧杂环丙烷酰亚胺 (PONB) 对位或邻位侧链基团的卤素取代使其具有可调的高玻璃化转变温度(220 至 245°C),同时具有 625–800 MV/m 的高击穿强度。p-POClNB 在 200°C 时实现了 7.1 J/cc 的高能量密度,代表了均聚物中报告的最高能量密度。使用分子动力学模拟和超快红外光谱来探测与介电热性能相关的自由体积元素分布和链松弛。随着对位侧链基团从氟变为溴,自由体积元素增加;然而,由于空间位阻,当处于邻位时,相同侧链的自由体积元素较小。在介电常数和带隙保持稳定的情况下,正确设计 PONB 的侧链基团可提高其高密度电气化的热稳定性。
时间不变的光子结构根据其内在的材料增益或损失来扩增或吸收光。可以利用多个光束在空间中的连贯干扰,例如,在谐振器中,可以分别使用材料增益或损失来定制波浪相互作用,从而最大程度地提高激光或相干的完美吸收。相比之下,即使在没有物质增益或损失的情况下,时间变化的系统也不受限制地节省能量,并且可以通过参数现象支持放大或吸收探针波。在这里,我们在理论上和实验上演示了如何通过光学泵送进行批量介电常数的亚波长膜(其批量介电常数均质和定期调节),可以通过操纵两种探测器的相对相对相对相对的相对相对的相对相对,从而动态地调节其作为非呼吸器的放大器和完美的吸收仪的作用。这将一致的完美吸收的概念扩展到了时间领域。我们将此结果解释为在定期调制介质的动量带隙中存在的增益和损耗模式之间的选择性切换。通过调整两个探针的相对强度,可以通过高达80%的吸收和400%的扩增来实现高对比度调制。我们的结果表明,在光学频率下对时变介质的增益和损失的控制,并为在Floquet工程化的复杂光子系统中相干操纵光的操纵铺平了道路。
(Al 2 O 3)X(HFO 2)具有不同组合物的1-X膜通过血浆增强的原子层沉积(PEALD)沉积在硅底物上,并制造了金属氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物层沉积物(MOS)电容器。通过电气测量检查了不同诱导的Al含量对HFO 2介电特性的影响。结果表明,增加的含量增加了平坦的电压,降低了界面状态密度(D IT),并显着降低了给定电压下的泄漏电流。此外,室温I-V测量值表明Schottky发射(〜0.8-4.8 mV/cm),Poole-Frenkel(PF)发射(〜4.8-7.3 mV/cm)和Fowler-Nordheim(FN)(FN)隧道(〜7.3-8.3 mV/cm)是众多机制。在较高的温度(75–100°C)下,富含AL的样品(50-100%)的泄漏机制从FN隧道转移到高电场的PF发射(〜3.3-6.87 mV/cm)。使用X射线光电子光谱(XPS)和紫外线(UV)分光光度法表征膜的组成和能带对准,表明将Al引入HFO 2会增加带盖,从而增加了介电常数,可减少介电常数,并显着降低氧气空间。因此,进一步证明,具有适当含量的HFO 2膜可以有效地增强介电特性并调整介电层的材料参数。
图 1-1:物联网示意图 ................................................ . ................................................. ...................7 图 1-2:不同类型的条形码;一维或线性、堆叠线性和二维 [3]。................................................ . ................................................. ................................................. .....7 图 1-3:安全元件(智能卡、护照、重要卡)市场的全球预测(2010 年至 2018 年售出数百万件) – Eurosmart [4] .... ... ……………………………… ................................8 图 1-4:2017 年非接触式市场:销量(单位:百万台)[4] ……………………………… ......9 图1-5:战争期间利用反向散射原理与雷达操作员进行通信 [7]。................................................ . ................................................... 31 图 1-26:带有外力传感器进行跟踪的 RFID 标签食品 [25] ................................... 33 图 1-27:a) 使用基于石墨烯的外部功能化区域的 RFID 传感器b) 电阻随相对湿度变化而变化的结果 [22] ................................................... 33 图 1-28:通信 RFID 传感器系列模拟................................................ ................. 35 图 1-29:具有阈值检测功能的生物 RFID 传感器:a) RFID 传感器剖面图,b) 俯视图,c) 不可逆石蜡基底的影响:芯片最小激活功率随温度变化的变化[61]。................................................ . ................................................. ...................................................... 39 图1 -30:示例取自带有敏感天线的 RFID 传感器文献,左侧:完全由石墨烯制成的天线 [47],右侧:由石墨烯精细部件组成的天线 [72]。...................................... 41 图 1-31:取自[76]的结果:a) 900 MHz 下蒸馏水的电特性 b ) RFID 传感器的最小激活功率,针对不同气温进行测量和平均。...................................... 43 图 1-32:结果取自[48]:a) 示意图由 Pt_rGO 实现功能化的射频识别 (RFID) 传感器标签。b) 柔性 RFID 传感器的照片。c) RFID 传感器的测量结果作为氢浓度的函数。................................................ . 43 图 2-1:无源 UHF RFID 传感器的天线功能化检测策略 ................................. ....... 56 图 2-2:无源 UHF RFID 标签的等效电路 [1] ........................................ ................................................ 57 图 2 -3: 辐射图偶极子与各向同性偶极子的比较 [5] ................................................ 59 图 2-4:极化电磁波的特征,a) 垂直极化,b) 水平极化和 c) 圆极化 [6] ........................................ . ................................................. ................................................. ....... 60 图 2-5:RFID 阅读器和标签之间的读取距离示意图 ................................ ................................................. 60 图 2-6:材料与电阻率的关系 [8] .... ................................................... ................................................... 62 图 2-7:法拉第实验:电枢电容器 [10] ................................ 62 图 2-8:电容器上电场感应的偶极矩原子 [10] ................................................ . .... 63 图 2-9:极化现象示意图 [10] ................................................ .. ................................... 64 图 2-10:复介电常数随频率的变化 [14] ................................................... 66 图2-11:实部和虚部复介电常数的计算....................................................... ................................. 66 图 2-12:介电常数和损耗对天线反射系数的影响....................... 67 图 2-13:小麦面筋的复介电常数与相对湿度 (RH) 的函数关系,频率为 868 MHz,温度为 25°C [13]。................................................ . ................................................. ................................................. ...................................... 68 图 2-14:拟议传感器天线的组成示意图。................................................ . ............ 69 图 2-15:用不同的方法对球体进行网格划分: (a) 球体的几何形状;使用 (b) 四面体 (FEM)、(c) 正交单元 (FDTD) 和 (d) 三角形 (MoM)[21]。...................................... 70
[1] 使用电池供电时,环境温度应保持在 < 50°C,否则会对电池寿命产生负面影响;建议切换到外部电源![2] 重要提示:使用制造商推荐的电池,不要让电池过热,不要扔进火中,不要充电,不要以错误的极性使用![3] 遵守国家法规,仅使用授权的电源设备 (SELV、PELV) – 连接必须由经过培训的专业电气工程专家进行![4] 在规定的精度范围内测量介电常数,最高电导率可达5,000 pS/m
摘要:目前的实验研究旨在确定蜗牛壳颗粒聚酯复合材料的介电性能。蜗牛壳(SNS)材料被获取,洗涤,晒干,磨成粉末,并筛成300μm的筛分级。使用手上色方法制成的具有10、20、30、40和50 wt%的蜗牛壳颗粒的重量分数。X射线衍射仪(XRD)分析表明,蜗牛壳颗粒包含以下元素:C,O,Na,Mg,Al,Si,K和Ca。SEM揭示的蜗牛壳颗粒复合材料的表面形态证实了颗粒本质上是坚实的。TGA/DTA分析揭示了SNS颗粒复合材料的热稳定性。测试和分析的性能是:介电强度,介电常数,电阻率,水分含量和吸水能力。研究了填充变化对上述特性的影响,并用作评估复合材料的标准。分别分别为10 wt%,30 wt%和50 wt。%蜗牛壳颗粒聚酯复合材料观察到最大介电强度,介电常数和电阻率。还观察到50 wt%样品的水分含量和吸水值最高。它显示出吸水能力和水分含量的10-50 wt%的逐渐增加。蜗牛壳颗粒的测量特性 - 聚酯复合材料与某些标准绝缘子相当。因此,它们可以用作使用的常规标准绝缘子的替代介电。
本文研究了银纳米粒子掺杂的 PMMA–ZrO 2 纳米复合材料的结构和光学特性。将银纳米粒子以 2、4 和 6 wt.% 的浓度添加到 PMMA–ZrO 2 纳米复合材料中。实验结果表明,随着银纳米粒子浓度的增加,PMMA–ZrO 2 纳米复合材料的吸收系数、消光系数、折射率、介电常数和光导率均增加,而透射率和能带隙均降低。结构和光学特性的结果表明,PMMA/ZrO 2 /Ag 纳米复合材料可用于不同的医疗和工业应用,例如太阳能电池、二极管、传感器、紫外线探测器等。