光子霍尔效应 (PHE) 早在 20 多年前就被预测 [1] 并被测量 [2]。它指的是沿垂直于入射电流和磁场的优先方向散射的电磁通量,这与电子传导中的 (异常) 霍尔效应非常相似。研究表明,PHE 源自介电米氏球单次散射中的法拉第旋转 [3],并在纯电偶极耦合区域(瑞利区域)中消失。因此,PHE 不会发生在原子的单次光散射中,而是由多次散射 [4] 或电偶极跃迁与更高的多极子发生干涉时产生的 [5]。在最近的文献中,人们发现了许多或多或少相关的效应,例如光子自旋霍尔效应 [6–8]、光的量子自旋霍尔效应 [9]、声子霍尔效应 [10]、等离子体霍尔效应 [11] 甚至其他光子霍尔效应 [12]。在具有中心光源的散射介质中,沿 z 轴施加均匀磁场 B 0 时,PHE 表现为绕场线旋转的电流。与 PHE 相关的坡印廷矢量由 S PHE = DH b B 0 × ∇ ρ ( r , t ) 给出,其中 ρ ( r , t ) 为电磁能量密度,DH ( B 0 ) 为霍尔扩散常数,其符号由法拉第旋转方向决定。最简单的情况是考虑一个点源 P ( r , t ) = P ( t ) δ ( r ),将功率 P 注入扩散常数为 D 的无限扩散介质中。对于单次能量为 W 的辐射,P ( t ) = Wδ ( t ),我们可以代入扩散方程的著名解,得到:
光斑转换器是实现不同尺寸波导间光高效耦合的关键。虽然绝热锥形非常适合小尺寸差异,但当扩展因子达到 × 100 左右时,它们会变得太长,这在耦合集成波导和自由空间光束时通常需要。在这种情况下可以使用衰减耦合器和布拉格偏转器,但它们的操作本质上受到带宽的限制。这里,我们提出了一种基于抛物面电介质界面的解决方案,该界面将光从 0.5 µ m 宽的波导耦合到 285 µ m 宽的波导,即扩展因子为 × 570 。我们通过实验证明了前所未有的超过 380 nm 的带宽,插入损耗低于 0.35 dB 。此外,我们提供了针对任意扩展因子设计此类抛物面光斑转换器的解析表达式。
静电储能电容器是电力电子器件必不可少的无源元件,由于电介质陶瓷能够在 > 100 ˚C 的温度下更可靠地工作,因此优先选择电介质陶瓷而不是聚合物。大多数工作集中在非线性电介质组合物上,其中极化 (P)/电位移 (D) 和最大场 (E max ) 经过优化,以提供能量密度值 6 ≤ U ≤ 21 J cm − 3 。然而,在每种情况下,P 的饱和 (dP/dE = 0,AFE) 或“部分”饱和 (dP/dE → 0,RFE) 都会限制在击穿前可以达到的 U 值。通过设计高介电常数准线性电介质 (QLD) 行为,dP/dE 保持恒定直至超高 E max ,可以进一步改善 U 相对于弛豫器 (RFE) 和反铁电体 (AFE) 的程度。 QLD 多层电容器原型的介电层由 0.88NaNb 0.9 Ta 0.1 O 3 - 0.10SrTiO 3 -0.02La(Mg 1/2 Ti 1/2 )O 3 组成,室温下 U ≈ 43.5 J cm − 3 ,支持极大的 E max ≈ 280 MV m − 1 ,对于基于粉末流延技术的设备,这两项性能均超过了当前最先进的水平两倍。重要的是,QLD 电容器在高达 200 ˚ C 的温度下 U ( ≈ 15 J cm − 3 ) 变化很小,并且具有强大的抗循环降解能力,为可持续技术的开发提供了一种有前途的新方法。
在可再生能源的快速发展中,能源供应的间歇性和不稳定构成了严重的挑战,并对能源存储系统施加了更高的要求。在各种储能技术中,功率到水的耦合方法(H 2)和地下H 2存储(UHS)提供了诸如扩展存储持续时间和大规模容量之类的优点,这使它对未来的发展非常有希望。然而,在UHS期间,特别是在多孔培养基中,微生物代谢过程,例如甲烷生成,乙酰发生和硫酸盐还原可能导致H 2征服和副产物的产生。这些微生物活动可能会对UHS的效率和安全性产生积极和负面影响。因此,本文对多孔培养基中UHS中微生物相互作用的实验,数值和领域进行了全面综述,旨在捕获研究进度并阐明微生物效应。首先概述了UHS的主要类型和关键的微生物代谢过程。随后,本文介绍了用于研究气体岩石岩石相互作用和界面培养物,数值研究中使用的模型和模拟器的实验方法,以及实施了内部试验的程序。此外,它分析和讨论了微生物相互作用及其对多孔媒体中UHS的积极和负面影响,重点是H 2消耗,H 2流和存储安全性。©2024作者。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.根据这些见解,网站选择的建议,工程操作以及对UHS的现场监控以及潜在的未来研究方向。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
技术,Karnataka 2 BE Scholar,CSE,部门,Shri Dharmasthala Manjunatheshwara技术学院,卡纳塔克邦摘要 - 该研究提出了一种基于手势的交互系统,旨在使用OpenCV和MediaPipe实时控制。此系统使用手势来提供一种直观且不接触的方式来与计算机进行交互,从而为与传统输入设备(如鼠标或键盘等传统输入设备)挣扎的人相互访问。使用单个网络摄像头,该系统连续捕获并监视手动移动。这些运动是通过模式识别算法处理的,以准确识别特定的手势,每个手势都与各种计算机操作相对应,包括鼠标运动,咔嗒声和滚动。该系统是针对用户友好性和效率进行设计的,使用户可以在无人接触的情况下轻松浏览其计算机屏幕。研究的结果强调了使用手势来实现基本计算机控制任务的实用性和有效性,在日常和专业计算方案中提出了一种有希望的无提交互方法。索引术语 - 手势识别,OpenCV,MediaPipe,小鼠控制,人类计算机相互作用。
使用纳米悬浮液可以提高砖粉药物和亲脂性物质的溶解度。它们的特征是无载体、纳米尺寸、100% 药物颗粒,粒径小于 1 纳米,用最少量的合适表面活性剂、聚合物或它们的组合制造而成。(7)与其他纳米悬浮液制造程序相比,湿介质研磨是一种更好的选择,因为它易于操作、价格低廉、高度可重复、高效、不含有机溶剂,并且易于扩大规模。(8)此外,在生产纳米悬浮液时,实现这些优势是当务之急。(9)另一方面,关键问题是研磨珠腐蚀可能带来污染。此外,由于研磨介质负载过重导致研磨设备重量过大,控制批量大小可能会变得复杂,而研磨时间延长也可能导致其他问题。 (10)对于湿式研磨,最重要的工艺变量是温度、研磨时间、研磨速度、介质体积和研磨尺寸。稳定剂类型、粘度、浓度和药物浓度是影响最终产品质量的典型配方特征。(11)工艺优化变得越来越重要,因为药物配方的开发通常侧重于生产出最好的最终药物,同时使用更少的能源并提高生产能力。(12)
1位位于沙特阿拉伯卫生部的Jazan的专业牙科中心2萨尔曼国王利雅得国王利雅得,沙特阿拉伯卫生部,沙特阿拉伯3孕妇和儿童医院,沙特阿拉伯卫生部,萨迪阿拉伯卫生部4萨吉拉 Al-Batin Central Hospital, Ministry of Health, Saudi Arabia 7 Al-Ahsa Eye City Hospital, Ministry of Health, Saudi Arabia 8 Phc mahaliyah, Ministry of Health, Saudi Arabia 9 Erada complex for mental health hail, Ministry of Health, Saudi Arabia 10 Maternity and Children Hospital Hafr Al-Batin, Ministry of Health, Saudi Arabia 11 Alwasli primary care center, Ministry of Health,沙特阿拉伯12卫生部,沙特阿拉伯卫生部13 Al Tuwal综合医院,沙特阿拉伯卫生部14 SAJER卫生部卫生部,沙特阿拉伯卫生部
需要具有适应特性的多孔层,例如,在传感器,执行器和其他具有低介电常数的功能层中,需要进行适应性。化学中,多孔层用于催化剂或过滤。由于多孔材料的内部表面积大,重点是能量转换应用,例如锂离子电池的超级电容器或创新阳极。硅是为此目的的有前途的材料。但是,需要多孔的Si矩阵来补偿充电过程中发生的机械应力和体积膨胀。
开放访问引用:Lahari R. Shetty,Kaushik Nayak,Priyanka博士。对比培养基对通过定量计算机断层扫描测量的腰椎骨矿物质密度的影响。Ethiop J Health Sci .2024; 34(5):359.Doi:http:// dx.doi.org/ 10.4314/ ejhs.v34i5.3收到:接受:2024年3月7日接受:2024年8月17日,2024年发表:9月1日:2024年9月1日,2024年,2024年版本:这是根据Creative Commons归因许可条款分发的开放式访问文章,该条款允许在任何媒介中不受限制地使用,分发和复制,前提是原始作者和来源被认为。资金:无竞争利益:作者宣布,该手稿均由所有作者以其形式批准,并且不存在竞争利益。隶属关系:
本文提出了一种新方案,通过对二维信息载体进行编码,实现动态湍流介质中高保真安全的自由空间光信息传输。将数据转换成一系列二维图案作为信息载体。开发了一种新的差分方法来抑制噪声,并生成一系列随机密钥。将不同数量的吸收滤波器任意组合放置在光通道中,以生成具有高度随机性的密文。实验证明,只有使用正确的安全密钥才能检索明文。实验结果表明,所提方法可行有效。所提方法为在自由空间光通道中通过动态湍流介质实现高保真光信息传输开辟了一条途径。