纳米级的光 - 物质相互作用的精确控制位于纳米光子学的核心。但是,由于相应的电磁近场通常限制在传统光学显微镜分辨率以下的体积之内,因此在此长度尺度上进行的实验检查是具有挑战性的。在半导体纳米型电磁场中进一步限制在各个亚波长谐振器的范围内,从而限制了这些结构中关键光 - 物质相互作用的访问。在这项工作中,我们证明了光电子发射显微镜(PEEM)可用于分辨近场光谱的极化以及受损坏对称性硅元素支撑的电磁共振的成像。我们发现,通过原位钾表面层启用的光发射结果与可见和近红外波长之间的全波模拟和远场反射测量一致。此外,我们发现了跨场阵列边缘附近的集体共振的偏振相关演变,利用了PEEM的远场激发和全场成像。在这里,我们推断出八个谐振器或更多之间的耦合建立了此元图的集体激发。总而言之,我们证明了高光谱的高光谱成像和PEEM的远场照明可以利用半导体纳米光子结构中的集体,非本地,光学共振的计量学。
鉴于交通的增加,尤其是大型星座,IADC 1已经建议成功处置的可能性显着超过90%(目标是99%),并且处置后剩余的轨道寿命远低于25年。
“热能储存尚未引起人们的关注,其受欢迎程度远低于其潜力。有机会以比电池或氢气便宜得多的方式加速工艺热的脱碳。” – Kraftblock 首席执行官 Martin Schichtel
摘要:针对地质环境及灾害特点,本文利用微电子、无线通信、薄膜太阳能供电等技术,结合轻量化工艺设计,提出了一种基于LoRa的地质灾害快速监测系统新方案。该系统基于STM32F103嵌入式微处理器和LoRa的SX1278模块,采用星型自组网设计,构建通信距离远、数据传输稳定可靠的监测系统。系统可实现灾体多项监测参数的实时数据采集,并通过LoRa/GPRS/北斗卫星将监测数据传输到数据中心或专用数据接收终端,为专家分析决策提供数据支持。该系统具有功耗低、传输距离远、自组网、通信稳定可靠等特点,在地质灾害监测领域具有广泛的应用前景。
• 随着非必要业务的重新开放,许多公司开始召回被迫休假或临时解雇的员工,有些公司甚至还雇佣了新员工。然而,即使最近就业有所增长,该地区的就业率仍远低于疫情前的水平。
在许多领域的摘要,包括消费电子,医疗设备和汽车行业,无线电力传输(WPT)已成为一种革命性的技术。这项工作研究了无线功率传输(WPT)的基本原理,将其分类为近场和远场技术,并分析其在无物理连接的设备提供电源方面的用途。该分析对WPT在消费电子,医疗行业和电动汽车中的使用进行了评估,强调了该技术改变这些领域的潜力。此外,该研究还讨论了与效率,安全性和法规合规性有关的障碍,这些障碍阻碍了广泛使用WPT。最后,研究了无线电力传输(WPT)的未来前景,重点是开发可能增强其经济可行性并纳入常见应用的技术。关键字:无线电源传输,近场方法,远场方法,消费电子设备,医疗设备。