其中 D μ 是弯曲时空中的协变导数。在这种情况下,m 根本不是一个乘法因子,而是克莱因-戈登方程中的特征。在这种背景下,有建议认为量子流体(超导体、超流体、量子霍尔流体、玻色-爱因斯坦凝聚体)的性质可能会增强与引力波的相互作用,从而导致超流体成为引力天线的介质[1-7],超导电路作为引力波探测器[8]、换能器[9,10]和镜子[11-13]。这些想法并非没有引起争议[14-16]。原因是许多这些想法启发性地应用了量子粒子违反 WEP 的概念。这促使我们为引力波中的量子粒子提供更严格的 WEP 特征。WEP 认为自由落体轨迹应该与质量无关,可以重新表述为自由落体物体的 Fisher 信息与质量不变的陈述 [ 17 ]。在这个信息论框架中,违反 WEP 意味着人们可以提取有关自由落体物体质量的信息。WEP 的这种信息论表述具有以下优势:它可以以明确的方式扩展到量子物体。具体而言,Fisher 信息给出了可观测随机变量提供的有关未知参数的信息量。在我们的例子中,随机变量是粒子 x 的位置,未知参数是其质量 m 。对于具有波函数 ψ( x , t ) 的粒子,Fisher 信息为
摘要 - 本文提出了一个基于变压器的新型框架,旨在通过生成精确的特定于类的对象定位图作为伪标签来增强弱监督的语义细分(WSSS)。在观察到标准视觉变压器中的单级令牌区域的观察基础上可以促进类不足的定位图,我们探索了变压器模型通过学习多个类代币来捕获类别歧视对象定位的特定于类别歧视对象的特定歧视对象的潜力。我们引入了一个多级令牌变压器,该变压器结合了多个类令牌,以启用与贴片令牌的类感知相互作用。为了实现这一目标,我们设计了一种班级感知的培训策略,该策略在输出类令牌和地面实际类标签之间建立了一对一的对应关系。此外,提出了一个对比类别(CCT)模块来增强判别类令牌的学习,从而使模型能够更好地捕获每个类别的独特特征和特性。结果,可以通过利用与不同类代币相关的类键入浓度来有效地生成类歧视对象定位图。为了进一步完善这些定位图,我们提出了从斑块到斑块变压器注意的斑块级成对亲和力的利用。此外,提出的框架无缝补充了类激活映射(CAM)方法,从而在Pascal VOC 2012和MS Coco 2014数据集中显着改善了WSSS性能。这些结果强调了类令牌对WSSS的重要性。代码和模型在此处公开可用。
石墨烯,排列在平坦的蜂窝晶状体中的碳原子具有许多有趣的电子特性[1,9]。在实现实验室中大型石墨烯晶体的实现后[10]的兴趣,理论和实验性是强烈的。主要特征之一是物理学家所说的电子在石墨烯中的“相对论行为”,石墨烯中的电子可以看作是生活在2 d空间中的无质量费米子,其动力学由weyl hamiltonian产生,即零毛汉氏菌,零含量为零。我们在这里提出了石墨烯的标准分析,该标准分析显示了Weyl纤维,这是对石墨烯的离散处理,可追溯到[13](即使不是更早)。我们已经有一段时间对经受垂直均匀磁场的石墨烯片的电子特性感兴趣。我们通过将哈密顿的积分内核乘以单型相因子来对这种情况进行建模,该技术被称为“ PEIERLS替代” [6,7,11]。
爱尔兰都柏林技术大学电气和电子工程学院的光子研究中心。B Tyndall国家研究所,大学科克大学科克,李·麦芽(Lee Maltings),戴克游行,爱尔兰科克。c数学,物理和电气工程系,诺森比亚大学,纽卡斯尔,泰恩NE1 8日,英国。* d19125415@mytudublin.ie
[7] O. Vinyals、I. Babuschkin、W. M. Czarnecki 等人。, “使用多智能体强化学习在星际争霸 II 中达到大师级水平”,《自然》,
摘要:光的自旋霍尔效应是一种通过光接口处的横向和旋转依赖性分裂形成的现象,对于从界面和依据的精确定量数据而言是一种吸引人的选择,是提高精度元学的一种吸引人的选择。这种高度的精度归因于弱测量的原理。自从其概念引入以来,通过弱测量技术从经验上观察到了光的旋转效果,并紧密地遵循了最初提出的实验配置。最近,有人建议将设置缩小尺寸,而精确度损害了。在这里,通过观察反映和
在此处给出了完整的确认部分:致谢:这项工作得到了中国国家自然科学基金会(No.62227801和No.UME20B2062,No.62376024)的支持,以及中国国家关键研究与发展计划(20222ZD0117900)。
记录的版本:此预印本的一个版本发表在2024年5月8日的多学科建模,实验和设计上。请参阅https://doi.org/10.1007/s41939-024-00405-7。
摘要:量子计算是许多计算应用程序的新范式。本研究介绍了目前可用于物理实施量子和量子门的技术,建立了其主要优势和缺点,以及用于编程和实施量子电路的可用框架。量子计算的主要应用之一是开发机器学习的新算法。在本研究中,描述了基于支持向量机(SVM)的量子电路的实现,以解决分类问题。该电路是专门为当前可用的嘈杂的中间量子量子(NISQ)计算机设计的。作为一个实验,基于超导量子的实体计算机对电路进行了测试,以检测未来弱信号的应用。弱信号是初期变化的指标,它将带来未来的影响。即使对于专家来说,这些事件的检测也很复杂,因为现在预测这种影响还为时过早。通过实验获得的数据显示出令人鼓舞的结果,但也证实了仍需要进行技术发展的数据以充分利用量子计算。