经济发展,人口增长和试图通过用太阳能和风能等绿色替代品代替基于化石燃料的技术来使经济脱碳经济,从而刺激了许多商品的大量需求增长,包括钴,锂,niobium,niobium,tantalum和稀有的地球元素(Dolega等人(Dolega等)(Dolega等)2021)。在2022年春季之前的几年中,几乎所有矿产原材料的世界市场价格上涨,钴等金属的价格从2021年初的30,000美元/吨升高到2022年春季的80,000美元左右(DERA 2022)。虽然原材料的价格上涨很多次,并且通常归因于暂时的供应短缺,但一些学者认为,绿色技术所需的矿物质和金属将受到持久的需求增长,可与石油和天然气的十年般的冲刺相当(巴黎和阿塔卡马202222222; Blondel and Kleijn 20222)。此外,最近与Covid-19的大流行有关的发展和乌克兰战争破坏了对全球供应链关系的信任,并恢复了对政治引起的供应短缺的恐惧。随后,原材料策略将被重新调整,很可能导致原材料加剧的争夺,特别关注绿色技术所需的金属。
海军航空母舰在海中央空转,其飞行甲板上的异物碎片 (FOD) 损害了其战备状态。飞机和地面支援活动产生了碎片和硬颗粒。即使是将飞机从机库甲板移到飞行甲板这种常规操作,也可能散布碎片或溢出油脂和喷气燃料。鉴于喷气发动机具有强大的进气口,可以吸入碎片,飞机发动机受损的风险太大,无法起飞和降落。如果飞机在公海的航空母舰滚动甲板上滑行,即使是少量溢出的油脂或燃料也可能很危险。
摘要。本文通过播种大麻(大麻sativa L.)进行了定量评估碳沉积的结果。在Khabibrakhmanov农民企业(Bashkortostan共和国)进行了现场研究,植物生物量中的碳含量由CN 802分析仪确定。发现在生长季节结束时,大麻作物形成7.87 t/ha地上生物量,包括茎 - 6.40 t/ha(占地上质量的81.3%),花序 - 0.77 t/ha(0.77 t/ha(9.8%的地上质量),种子-0.70 t/ha(8.70 t/ha(8.70 t/ha)(8.9%的地上质量)和质量/质量。保留了8.19吨/公顷。播种从大气中捕获了相对较大的二氧化碳(14.78 t/ha),因此,碳(4.03 t/ha)。大麻在脱碳方面的有效性主要包括在长期进入长期产物并进入土壤中长期储存大量的累积碳(91%)。建议在碳农场种植大麻,以减少碳足迹并出售碳单元。
兼捕——广泛用于指在捕捞作业中除目标物种之外意外捕获的渔获物,包括丢弃物和偶然捕获的脆弱物种——被认为是对渔业盈利能力和可持续性以及海洋环境和生态系统保护的最重要威胁之一。在地中海,对偶然捕获脆弱物种的研究仅涵盖了整个捕捞活动的一小部分。此外,在多种渔具、多个国家和/或次区域以及时间尺度上存在一些重要的知识空白,并且只有少数措施用于保护脆弱物种。监测计划和对偶然捕获的调查遵循统一的方法,允许在各次区域之间比较结果,这对于提高对这一问题的认识以及随后支持确定潜在的缓解方法和工具以及相关管理措施是必不可少的。本出版物及其所包含的方法旨在为地中海和黑海中遇到的所有脆弱物种(即板鳃类、海洋哺乳动物、海鸟、海龟和大型底栖无脊椎动物)的开发和实施高效、标准化的数据收集和监测系统提供一个框架。这是通过船上观察实现的,
对微生物浮游生物生物多样性的评估和监测对于获得对海洋环境的健康状况的良好评估至关重要。PETRI-MED项目通过制定新的策略来根据卫星观测来监测微生物浮游生物群落组成和功能来解决这一必要。培养皿将专注于地中海作为具有深远的生态和文化重要性的全球生物多样性热点。Petri-Med项目的主要目标包括(i)基于创新的卫星指标的开发,以确定微生物浮游生物社区的生物多样性状态和趋势,(ii)鉴定微生物浮游生物分布和多样性的微生物浮游生物分布和(iii)的自然连接式的生物群体及其多样性范围的范围,包括生物群体的自然连接,包括生物群的自然连接,包括生物范围。通过关注海洋健康和/或生物地球化学状态的关键指标。这样做,培养皿将主要依赖卫星光学放射测量(即海洋颜色,OC),从而利用最新OC欧洲数据集的时间和空间特征(即,由copernicus sentinel-3和欧洲航天机构的OC-CCI)具有偏僻的隔离式观察(即copernicus Sentinel-3和欧洲航天机构),并具有偏僻的海拔(AS-Art Space)。电流建模和基因组技术。为了实现合并遥感,生物地球化学/物理建模以及原位测量测量的雄心勃勃的目标,Petri-Med将依靠人工智能(AI)。PETRI-MED的总体目标是使决策者和利益相关者获得必要的知识,以根据定量的实时指标对生态系统管理采用优先级别方法。这包括保护和实施保护策略和政策,以保护生物多样性,量化各个层面实施的行动的影响,并为海洋保护区(MPA)(MPA),关键生物多样性领域以及生态或生物学上重要的海洋领域提供系统的,事实支持的事实支持。此外,彼得索(Petrimed)试图评估MPA管理对气候变化的可行性,从而确保在面对环境挑战时为保护海洋生态系统的保护策略。总而言之,PETRI-MED代表了一种全面而创新的方法,可以促进我们对地中海中微生物浮游生物生物多样性的理解。通过卫星技术,法学技术和AI的整合,该项目为有效的海洋生态系统管理和保护策略提供了宝贵的见解和工具。
海洋微塑料可以通过生物污染的微生物生物定植,从而导致微塑料的浮力降低。因此,生物质塑料的下沉可以代表海洋碳循环中新型的碳出口途径。在这里,我们建模了微塑料如何通过杜型生物融合,由于浮力变化而导致的垂直运动以及水柱中粒子附着的硅藻和碳池之间的相互作用。我们使用来自Nemo-Medusa-2.0的生物地球化学数据初始化了Lagrangian框架,并估算出以100 mM微塑料的不同表面浓度从1 mm微塑料的不同表面浓度开始的有机碳的量。我们专注于以世界上一些最高的微塑料浓度为特征的Medi-TerraneA海,并且是由大气中二氧化碳水平上升引起的生物地球化学变化的热点。我们的结果表明,下沉的生物融合微塑料引起的碳输出与海面层中的微塑料浓度成正比,至少在建模浓度下。我们估计,尽管当前的微塑料浓度可以使自然生物碳的导出<1%,但未来在业务上的污染场景下预测的未来浓度可能会导致碳出口量超过基线(1998 - 2012年),到2050年。以高主要生产力为特征的区域,即西地中海和中部,是微塑料介导的碳出口结果最高的地区。虽然强调了这种现象在地中海中的潜力和数量有限的发生,但我们的结果呼吁进一步研究全球海洋中与微塑料相关的碳出口途径。
摘要。由于长期运行高分辨率模型的高计算成本,因此气候变化的模型投影通常不包括解决方案良好的海洋尺度。这项挑战是使用效率最大化的建模策略来应对的,该策略适用于过去,现在和自由气候的3公里模拟。模型设置利用了降低分辨率的旋转和瞬态模拟,以在短时间内初始化区域性的高分辨率海洋模型。将结果与卫星高度学数据和更传统的涡流仿真进行了比较,并根据其复制观察到的中尺度效果的能力进行了评估,并揭示了对与自然变异性不同的气候变化的反应。高分辨率模拟良好地产生了观察到的南洋涡流能量(EKE)的幅度,但局部大小和EKE的分布仍然存在差异。较粗糙的涡流集合模拟了类似的EKE模式,但主张不足的水平观察到了55%。在变暖的大约1°C时,高分辨率模拟不会导致整体EKE的变化,而与完全合奏在涡流模拟中的EKE同意相比。在变暖的大约4°C下,两个数据集都以相对术语增长了EKE的一致水平,尽管不是绝对幅度,并且EKE变量的增加。模拟的Eke上升集中在已经知道的地区的流动范围