愿景:成为世界一流的超导和电磁学团队,创造超导磁体技术的未来。磁体部门员工在以下领域发挥领导作用:• 超导磁体技术• 磁体开发、制造和测试,应用于加速器、科学、聚变和工业能力:• LTS 和 HTS 超导磁体 - 10m 线圈绕制能力、Nb 3 Sn 炉 4.2 m• 直接绕线磁体和设施 - IR 和特种磁体、精密磁场质量、2.5m 线圈绕制能力• 磁体测试设施 - 1.9K、22KA、6.1m 深、71cm 直径。当前优先事项:• 加速器升级项目 - 线圈构造、垂直磁体测试• EIC 磁体 - IR、磁体测量、RHIC 磁体再利用• 磁体开发项目 - HTS/LTS 混合、诊断• 聚变 - INFUSE、ARPA-E (CFS)、MPEX
《外层空间条约》是国际太空法的“大宪章”。它详细介绍了适用于与太空领域有关的活动的最基本规则和原则。外太空是“全人类的省”,仅用于和平目的。同时,空间一直是一个军事化的环境。近年来,空间的军事化似乎真的在起飞。1如果这种趋势继续下去,那么空间可能会成为新的战场。各种州具有抗卫星(ASAT)武器,并以相当多的空间碎片(绕地球绕)进行测试。北约最近制定了总体空间政策,并正式将空间视为战争的运营领域。在美国国会举行了多年的辩论之后,特朗普总统于2019年12月发起了太空部队。法国和其他几个州也有类似的计划。显然,当涉及外层空间的(进一步的)军事化时,国家正在变得越来越积极。
2021年11月15日,俄罗斯的反卫星测试造成了1,500多个轨道碎片,威胁着国际空间站的机组人员。船员在胶囊中被庇护的机组人员不得不撤离(眨眼2021)。到目前为止,人类太空任务已经产生了8000吨轨道碎片(NASA 2020)。Moreo-ver是“太空旅游”的曙光,该术语被最近的太空任务推广,标志着太空工业化时代的加速度(SpaceX24 2021)。最近的报告集中在太空碎片引起的太空碰撞上,但实际上,关于太空工业对地球环境的影响实际上很少讨论(NASA 2021A; MSN 2021)。在这里,我们回顾了太空碎片对地球环境的影响。大约23,000个比垒球大的物体,大约10厘米,总重8000吨,实际上以每小时17,500英里的速度绕地球绕地球(NASA 2020,2021b)。通过反思和散射阳光,人造的太空物体和碎屑使
电阻器按功能可分为固定电阻器和可变电阻器(可调电阻器)。电阻器结构一般有三种类型:合成电阻器、薄膜电阻器或线绕电阻器。它们基本上由安装在基座或基板上的电阻元件、环境保护涂层和外部电引线组成。合成电阻器由电阻材料和粘合剂的混合物制成,并模制成具有特定电阻值的预定形状。薄膜电阻器由沉积在绝缘圆筒或细丝内部或外部的薄电阻膜制成,在绝缘圆筒或细丝上刻有螺纹图案(有时称为螺旋切割或螺旋切割),以在陶瓷或玻璃基板的两端之间形成薄窄条或电阻材料轨道。线绕电阻器由缠绕在绝缘体上的电阻丝制成。这三种基本类型在固有可靠性、尺寸、成本、电阻范围、额定功率和一般特性方面有所不同。没有一种类型具有所有最佳特性。在选择它们时必须考虑许多因素。
1. 简介 地球轨道上的太空活动会产生天然流星体和空间碎片。流星体是由彗星和小行星产生的。流星体绕太阳运行,迅速经过地球并离开地球附近,导致流星体与航天器相撞的流量(每年每单位面积撞击物体的数量)相当连续。流星体对航天器的危害很小,因为它们主要是小颗粒。空间碎片由人造物体组成,现在和未来几年都无法发挥有用的作用。这些空间碎片包括非运行卫星、火箭上面级、因意外或故意碰撞和爆炸而解体产生的碎片、火箭尾气中的铝颗粒等。空间碎片绕地球运行并保持在轨道上,直到大气阻力和其他扰动力最终导致其轨道衰减到大气层中。由于大气阻力随着高度的增加而减小,大约 600 公里以上轨道上的大型碎片可以在轨道上停留数十年、数千年甚至数百万年。 (1)近年来,随着航天事业的进步,空间垃圾问题日益凸显。
电阻器按功能可分为固定电阻器和可变电阻器(可调电阻器)。电阻器结构一般有三种类型:合成电阻器、薄膜电阻器或线绕电阻器。它们基本上由安装在基座或基板上的电阻元件、环境保护涂层和外部电引线组成。合成电阻器由电阻材料和粘合剂的混合物制成,并模制成具有特定电阻值的预定形状。薄膜电阻器由沉积在绝缘圆筒或细丝内部或外部的薄电阻膜制成,在绝缘圆筒或细丝上刻有螺纹图案(有时称为螺旋切割或螺旋切割),以在陶瓷或玻璃基板的两端之间形成薄窄条或电阻材料轨道。线绕电阻器由缠绕在绝缘体上的电阻丝制成。这三种基本类型在固有可靠性、尺寸、成本、电阻范围、额定功率和一般特性方面有所不同。没有一种类型具有所有最佳特性。在选择它们时必须考虑许多因素。
位于法国格勒诺布尔的欧洲同步辐射设施。同步辐射光源使用巨型储存环中加速到接近光速的电子来产生非常明亮的 X 射线。该环的周长为数百米;绕设施一圈需要 15 分钟。
摘要 — 飞机检查的可靠性对飞行安全至关重要。飞机结构的持续适航性很大程度上取决于经过培训的检查人员对小缺陷的目视检测,这些检查任务昂贵、关键且耗时。为此,无人机 (UAV) 可用于自主检查,只要能够在绕目标飞行时定位目标并纠正位置即可。这项工作提出了一种解决方案,用于在近距离自主绕机身飞行以进行目视检查任务时检测飞机相对于无人机位置的姿态。该系统的工作原理是处理来自机载 RGB 相机的图像,将传入的帧与已知机身表面位置的自然地标数据库进行比较。该解决方案已在真实的无人机飞行场景中进行了测试,显示出其在高精度定位姿态方面的有效性。所提出方法的优势具有工业意义,因为我们消除了现有技术解决方案中存在的许多限制。索引词——视觉检查,自我定位,3D姿态,地标检测
我们的分销分支机构 Milton Ross Composants 除我们自己的陶瓷生产外,还可以通过与专业制造商(主要是欧洲)合作,提供全系列(钽除外)电容器(薄膜、电解)和电阻器(厚膜、薄膜、线绕),提供相同的高价值产品、高电压、高精度、大值、定制产品,并且始终具有最短的交货时间。
轨道碎片是指任何绕地球运行的人造太空物体,不再具有任何有用的用途 [1]。轨道碎片对所有太空任务都构成威胁,包括情报界 (IC) 的任务。低地球轨道 (LEO) 的平均撞击速度为 22,500 MPH,即使是最小的碎片也会造成严重损害,0.2 毫米的油漆碎片撞击 STS-71 时产生的直径为 3.8 毫米的坑洞就是明证 [2]。目前,有超过 1 亿个大于 1 毫米的物体绕地球运行,[3, 4] 但据估计,目前追踪到的可能造成任务终止损害的碎片不到 1% [5]。此外,由于近地空间环境的动态和多变性,预测碎片的轨迹极其困难,需要持续监测 [6]。虽然目前可以探测和追踪大于 10 厘米的碎片,但目前的能力不足以追踪较小的碎片 [7]。太小而无法追踪的碎片通常被称为“致命的不可追踪碎片”(LNT),[8] 会对航天器造成严重损害,甚至危及太空任务。探测、跟踪和表征 LNT 碎片将有助于全球宝贵太空资产的更安全运行 [9]。