DNA提取在确定分子生物学的遗传问题中起着至关重要的作用。弗里德里希·米舍(Friedrich Miescher)于1869年在DNA上首次发现了粗糙的提取(Ali等人,2017年)。DNA提取的基本原理由几个步骤组成:(1)使用CTAB(Aboul-Maaty and Oraby and Oraby,2019)或SDS方法(El-Ashram等人,,2016年),而物理破坏,包括使用液氮隔离来研磨样品(Sahu等人,2012年)甚至酶促治疗,例如蛋白酶K(Sirkov,2016)和RNase(Tel- Zur等人。,1999; El-Ashram等。,2016年; Wang等。,2019年)可用于消除潜在的污染; (2)从细胞裂解物化合物中纯化DNA; (3)降水和DNA纯化(Dairawan and Shetty,2020年); (4)使用酒精和(5)含有低离子强度的溶液冲洗样品,通常使用Tris EDTA缓冲液溶解DNA并保护其免受降解。DNA提取方法可以使用
1.CACTI和生物多样性仙人掌是生物多样性的宝贵指标,强调了其本地栖息地中存在的多种生命形式和生态相互作用。研究仙人掌及其生态系统提供了对生物多样性的复杂动态的见解,以及保护这些独特而有价值的植物物种的重要性。适应恶劣的环境:仙人掌以其在极端条件(例如干旱沙漠)中生存的能力而闻名。它们的独特适应性,包括储物组织,减少叶片表面以最大程度地减少水分流失,以及保护食草动物的棘突,显示出植物已经发展为在挑战性的环境中发展为蓬勃发展的策略的显着多样性。物种多样性:仙人掌表现出广泛的物种多样性,属于仙人掌科家族的1,500多种已知物种。这种多样性包括各种大小,形状和生长习惯,从微小的球状仙人掌到高耸的柱状物种。每个物种都演变为占据特定的生态壁ches,这有助于其栖息地的整体生物多样性。栖息地多样性:仙人掌在美洲的各种栖息地中发现,从干旱的沙漠到热带雨林。它们在这种不同的环境中的存在突出了这些地区的生物多样性及其适应不同生态条件的能力。授粉与互助:仙人掌与蜜蜂,鸟类,蝙蝠和昆虫等传粉媒介进行了迷人的相互作用,这有助于其生态系统的生物多样性。许多仙人掌物种与特定的传粉媒介共同发展,形成了互助关系,从而使植物和传粉媒介受益。文化和经济重要性:仙人掌对人类社会具有重要的文化和经济意义。土著社区长期以来一直将仙人掌用于食品,医学和宗教仪式,强调了它们在传统知识系统中的重要性。此外,某些仙人掌物种,例如刺梨仙人掌(Opuntia),是为其可食用的水果而种植的,而另一些仙人掌物种则被视为花园和景观中的观赏植物。
摘要:这项研究的目的是校准和验证仙人掌品种Opuntia stricta(Haw。)HAW,为了模拟农作物产量并使模型适用于半干旱区域中产量的模拟。Aquacrop Model 5.0具有四个模块,涵盖了与气候,农作物,灌溉和土壤有关的方面,这些模块是在Semiarid(INSA)的实验农场进行的一项实验中收集的数据,该实验位于位于PB Campina Grande City,PB,Mesoregion,Braz agraz的PB市政府。基于这些数据,进行了产量估计,观察水对作物产量的影响。为了验证模型,将在7和28天的灌溉频率下在田间获得的数据与Aquacrop模型估计的结果进行了比较。针对仙人掌品种Opuntia stricta(Haw。)HAW,对模拟生产率的令人满意的结果,使Aquacrop成为适用于模拟产量和对这些农作物水应力的响应的模型,这可以帮助生产者在其财产上的决策过程中为生产者提供帮助。
在纳米尺度(1 纳米至 100 纳米 (10-9 米))上对结构、电子和系统进行操控被称为纳米技术 [ 1, 2]。金属纳米粒子,尤其是金纳米粒子 (AuNP),因其与入射光的奇妙相互作用而备受关注 [ 3]。在所有金属纳米粒子中,金纳米粒子因具有电、磁、生物传感、等离子体、光子、催化和生物医学特性,在近几十年来引起了最多的关注 [ 4 ]。金纳米粒子对生物医学应用做出了重大贡献,如免疫色谱病原体识别、药物输送、生物标记、光热疗法和癌症光诊断 [ 5 ]。AuNP 在尺寸、形状、溶解度、稳定性和功能方面的可控合成一直是人们研究的课题。合成 AuNPs 的方法通常可分为三类:化学方法、物理方法和生物方法 [6]。化学方法、物理方法和生物方法。合成 AuNPs 的另一种环保方法是通过称为“绿色合成”的生物技术。为了最大限度地减少传统 AuNPs 合成过程中产生的有害化学物质和有毒副产物,生物合成至关重要。目前,不同的 AuNPs 是使用绿色材料生产的,如植物、真菌、藻类、酶和生物聚合物 [7-9]。由于生物合成产生的 AuNPs 高度稳定且特征明确,因此在生物医学应用中使用它们通常更安全,因为这些化合物来自天然材料 [10]。已经采用了几种经济、环保且实用的技术来从微生物 [11]、植物提取物 [12] 中生产纳米颗粒。这些植物提取物在将金转化为纳米颗粒时充当封端剂和还原剂
摘要 - 本文描述了一种称为仙人掌的输入空间建模和测试生成方法(具有组合测试的挑战性自治),该方法为自主系统创建了一系列“挑战场景”。尽管自主系统的参数空间是广泛的,但仙人掌有助于使用组合测试以及通过将专家判断到场景的制定中减少参数空间。可以在适当的测试基础结构(例如模拟器或循环测试)上执行所得场景。仙人掌可用于锻炼系统,作为获得符合ISO 21448或UL 4600等标准的努力的一部分。该方法用于生成商用自动驾驶汽车感知系统的测试方案。索引术语 - 跨越测试,输入建模,Au ossos Systems,自动驾驶汽车
本报告旨在向国会提供有关美国能源部 (DOE) 对马绍尔群岛共和国鲁尼特岛仙人掌陨石坑遏制结构进行的目视调查和地下水放射化学分析的活动和结果的信息,并确定这些调查和分析是否表明仙人掌陨石坑遏制结构内的污染物对埃尼威托克人民的健康风险发生了重大变化,如 2011 年岛屿地区法案第 112-149 号公法第 2 节所规定的那样。美国能源部于 2013 年和 2018 年对鲁尼特岛仙人掌陨石坑遏制结构完成了两次目视研究。这些研究评估了保护下方封装的受污染土壤和放射性碎片免受侵蚀的各个混凝土面板盖段的状况。虽然研究显示一些混凝土板存在可见缺陷,主要包括裂缝和混凝土板接缝和角落剥落,但能源部确定这些缺陷不是结构性的,也不太可能造成与放射性污染扩散到环境中相关的任何其他危害。此外,无损和核心样本测试结果表明,外部混凝土盖没有受损,并发挥了其预期作用,即提供有效的屏障以减少底层废料堆材料的自然侵蚀。鲁尼特岛地下水监测计划表明,在现有条件下,似乎没有明确证据表明仙人掌陨石坑放射性物质的扩散对近海泻湖或周围海域的辐射环境产生可测量的影响。泻湖水中观察到的 239+240 Pu 污染水平升高似乎主要是由泻湖沉积物中的钚引起的,而不是由仙人掌陨石坑污染物流入泻湖引起的。根据视觉研究和从 Runit 地下水监测计划观察到的数据,能源部确定,仙人掌陨石坑围堵结构内的污染物对埃尼威托克人民的健康风险没有显著变化。2022 年,能源部与美国陆军工程兵团 (USACE) 展开合作,协助设计和安装额外的地下水监测资源,以改善未来数据,并更详细地描绘仙人掌陨石坑围堵结构内部及周围的地下水流动和特征。
5 土木工程系,1,2,3,4,5 圣托马斯工程技术学院,喀拉拉邦,Chengannur,印度 摘要:该项目的重点是通过可再生能源进行能量收集和储存。在许多情况下,由于供应、价格和需求不平衡,蔬菜可能会腐烂或市场饱和。废弃蔬菜和野生植物含有电化学活性化合物,可用于制备可充电生物电池。在该项目中,通过耦合洋葱-萝卜、洋葱-苦橙、洋葱-仙人掌、芜菁-萝卜、芜菁-苦橙和芜菁-仙人掌的电活性化合物构建了一组电池。使用这些蔬菜组合的新鲜汁液,并优化反应条件以使输出电压最大化。在不同充电时间、汁液量和充电电压下对电池充电前后的输出电压进行测量。在所研究的电池中,萝卜仙人掌单电池产生的开路电压为 2.13 V,而洋葱萝卜电池产生的开路电压为。索引术语 – 生物电池、废物管理。
摘要 仙人掌属植物(Opuntia ficus-indica (L.) Mill.)是能够耐受恶劣环境条件的最知名农作物之一。南非是少数拥有大量仙人掌种质资源的国家之一,这些种质资源代表了移地保护种群。然而,人们对该种群的遗传多样性知之甚少。此外,一些基因型在形态上不明显,因此,对于新手农民和研究人员来说,识别种质资源中的样本是一项挑战。本研究旨在使用八个简单序列重复 (SSR) 标记来区分和测量代表南非仙人掌种质资源的 44 个栽培品种的遗传多样性。显然,这些品种具有中等水平的多样性(平均多态性信息含量 PIC = 0.37,Nei 无偏基因多样性 = 0.42),可区分 90% 的品种。使用算术平均数 (UPGMA) 的非加权配对法对品种进行分析,发现主要分为三个聚类,而主坐标分析 (PCoA) 则显示,根据品种在农业中的用途,其聚类不明显。
刺梨(PP)或Opuntia ficus-Indica(Ofi),其科学名称来自Oponte的拉丁语Opuntius;希腊城市的名称[2]。通用名称是仙人掌,它来自希腊语“ kaktos”,意思是:棘手的植物[3]。根据Schweizer(1997)的说法,该植物的名称可能不同,具体取决于当地的成语:Nopal,Tuna,African Thistle,Prickly Pear,El-Tin-El-Choki等[2]。Opuntia原产于墨西哥,此外,刺梨的果实出现在墨西哥国旗的标志上[4]。它主要生长在干旱和半干旱地区和极端条件下。其地理分布主要位于墨西哥,西西里岛,智利,巴西,土耳其,韩国,阿根廷和北非[5]。粮食和农业组织强调,低水的紧急性和高水利用效率比有利于仙人掌生产的扩展[6]。