胰岛素抵抗会损害餐后葡萄糖通过4型葡萄糖转运蛋白(GLUT4)的吸收,并且是前2型糖尿病的primary缺陷。我们以前在肌肉,脂肪和神经元亚群中以人Glut4启动子驱动的胰岛素受体基因敲除(GIRKO)的形式发电了一种耐胰岛素的小鼠模型。然而,在正常食物饮食(NCD)6个月之前,Girko小鼠的糖尿病率保持较低,这表明其他因素/机制是导致不良代谢作用促进明显糖尿病的最终进展的不良代谢作用。在这项研究中,我们表征了成年吉科小鼠的代谢性疾病,急性切换为高脂饮食(HFD)喂养,以确定疾病进展所需的其他代谢挑战。与其他饮食诱导的肥胖症(DIO)和遗传模型不同(例如,DB/DB小鼠),Girko小鼠在HFD喂养方面保持倾斜,但发展了胰岛素抵抗综合征的其他基本特征。girko小鼠尽管增加了高血糖。此外,Girko小鼠的口服葡萄糖耐受性也受损,而Exendin-4的降低葡萄糖降低有限,这表明钝化的肠染色蛋白作用有助于高血糖。其次,由于HE-Patic脂质分泌,血清甘油三酸酯浓度和脂质液滴在肝细胞中累积,Girko小鼠在HFD上造成了严重的血脂异常。总而言之,我们的研究鉴定出有助于糖尿病进展的重要基因/饮食中的重要基因/饮食中,这些基因/饮食可能会利用这些糖尿病进展,从而发展出更有效的疗法。第三,HFD上的Girko小鼠在肠道中增加了炎症提示,这与HFD诱导的微生物组和血清脂多糖(LPS)有关。
侧重于植物对环境挑战的耐受性,纳米技术已成为一种有力的工具,可以在全球人口不断增长的情况下帮助农作物和促进农业生产。纳米颗粒(NP)和植物系统可能会与分子相互作用以改变压力反应,生长和发育。NP可以通过吸收信号来检测和监测土壤中的痕量成分,从而为植物提供营养,预防植物疾病和病原体。对帮助植物生存的NP的过程有更多的优势了解各种压力源将有助于制定更长期的策略来应对这些挑战。尽管对NP在农业中的使用进行了许多研究,但我们审查了各种类型的NP及其对进入植物细胞的预期分子和代谢作用。此外,我们讨论了NP与所有环境压力的不同应用。最后,我们引入了农业NPS的风险,困难和前景。
摘要 医疗器械代表了一类广泛的产品,旨在用于预防、诊断、监测、治疗或缓解疾病或损伤。近年来,医疗器械的发展已导致越来越多的产品含有“物质”,由于其存在形式和使用部位与药品相似,通常被称为“边缘”产品。欧盟 (EU) 的监管文件在许多监管领域都考虑了基于物质的产品;在治疗学中,他们根据产品的主要作用机制将“医疗器械”与“药品”区分开来。这种区别通常不是直观的,而是基于对“药理、免疫和代谢作用机制”等基本术语的正确解释,这些术语具有重要的监管意义。本文讨论了正确解释这些术语的问题,并希望引起药理学家的兴趣,设计适当的实验范例,以严格、科学地解释由物质制成的医疗器械的正确作用机制。
胰岛素的降血糖作用是通过肝脏中糖异生和糖原分解的弱化作用来解释的,脂肪生成,糖生成,蛋白质生成以及刺激细胞增殖的有丝分裂作用的合成代谢作用。根据病毒的发生,区分了原发性(自发)和继发性糖尿病。有两种类型的主要糖尿病:I型和II型。继发性糖尿病是在其他疾病的背景下发生的。这种疾病在胰腺损伤期间发展,内分泌疾病,伴有反界激素的分泌(库欣综合症,肢端肿瘤,嗜血果细胞瘤,甲状腺毒性,脊柱蛋白毒素,葡萄糖代表等)。),许多染色体疾病(down,klinefelter)等。糖尿病属于遗传性(多基因)组,很少是常染色体主导地传播疾病,其特征是所有类型的代谢性疾病,是一种需要复杂矫正的疾病。
胆碱是一种必需营养素,具有代谢作用,可作为一碳代谢中的甲基供体,以及膜磷脂和神经递质乙酰胆碱的前体。胆碱含量在肝脏、鸡蛋和小麦胚芽中特别高,尽管它存在于各种食物中。北欧和波罗的海国家胆碱的主要饮食来源是肉类、奶制品、鸡蛋和谷物。缺乏胆碱的饮食会导致 3 周内肝脏和肌肉功能障碍。怀孕和哺乳期的胆碱需求量高于非怀孕女性。虽然没有随机对照试验,但人类观察性研究(由神经发育结果的干预性研究和动物实验研究的一致性支持)强烈表明,怀孕期间摄入足够的胆碱对于儿童的正常大脑发育和功能是必要的。观察性研究表明,摄入足够的胆碱可能对老年人的认知功能产生积极影响。然而,缺乏前瞻性数据,也没有针对老年人的干预性研究。
G 蛋白偶联受体 (GPCR) 形成一个质膜受体超家族,可与四种主要的异三聚体 G 蛋白家族 G s 、 G i 、 G q 和 G 12 偶联。GPCR 是药物治疗的极佳靶点。由于各个 GPCR 由许多不同类型的细胞表达,因此特定细胞类型表达的特定 GPCR 的体内代谢作用尚不清楚。设计 GPCR 被称为 DREADD(仅由设计药物激活的设计受体),可选择性地与不同类别的异三聚体 G 蛋白偶联,极大地促进了该领域的研究。本综述重点介绍如何使用 DREADD 技术探索不同 GPCR/G 蛋白级联在几种代谢重要的细胞类型中的生理和病理生理作用。从这些研究中获得的新见解应促进基于 GPCR 的治疗方法的开发,以治疗 2 型糖尿病和肥胖症等主要代谢疾病。
1 型糖尿病 (T1D) 患者在感染 2019 冠状病毒病 (COVID-19) 期间可能会出现严重后果,但他们对 SARS-CoV-2 mRNA 疫苗产生免疫反应的能力仍有待确定。我们评估了严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) mRNA 疫苗对 T1D 患者的安全性、免疫原性和糖代谢作用。这项单中心观察性研究纳入了 2021 年 3 月至 4 月期间在 ASST Fatebenefratelli Sacco 接种了两剂 SARS-CoV-2 mRNA 疫苗 (mRNA-1273、BNT162b2) 的 375 名患者(326 名患有 T1D,49 名无糖尿病患者)。两组患者在接种 SARS-CoV-2 mRNA 疫苗后均报告了局部和全身不良事件,但两组之间没有统计学差异。虽然 1 型糖尿病患者和非糖尿病患者在接种疫苗后,其抗 SARS-CoV-2 尖峰滴度均出现平行增加,但大多数 1 型糖尿病患者(分别有 70% 和 78%)
肠道菌群是一个复杂的微生物生态系统,在维持免疫和代谢稳态方面发挥着重要作用。这种微生物平衡的破坏被称为菌群失调,越来越多地被证明与慢性炎症疾病的发病机制有关,包括心血管疾病、胃肠道疾病和自身免疫性疾病,以及糖尿病和肥胖症等代谢紊乱。肠道菌群对宿主生理产生影响的一个关键机制是通过产生生物活性代谢物。这些代谢物,包括短链脂肪酸、胆汁酸和色氨酸衍生物,是调节免疫反应和调节代谢功能的关键。菌群失调会破坏这些代谢物的产生和功能,从而导致免疫失调、慢性炎症和疾病进展。本综述探讨了肠道菌群衍生的代谢物在慢性炎症疾病中的作用,重点关注它们的免疫调节和代谢作用。更深入地了解这些机制可能会为旨在恢复免疫稳态和减轻全球慢性炎症疾病负担的新型治疗策略开辟道路。
2型糖尿病(T2D)的管理仍然是全球范围内的重大挑战[1,2],需要采用多因素方法来降低心血管风险并预防和解决代谢合并症[3,4]。肠凝集素激素像胰高血糖素一样的peptiDE 1(GLP-1)和葡萄糖依赖性胰岛胰岛多肽(GIP)被肠道对食物摄入响应[5]释放。除了它们的胰岛素作用外,它们在表达GLP-1和/或GIP受体的组织中还具有许多作用,包括胰腺,脑和脂肪组织(表S1,补充附录)[6]。然而,T2D患者[5,6]的肠毒素反应减少了。tirzepatide是第一类GIP/GLP-1受体激动剂('Twincretin'),这是一个单鼠,在GLP-1和GIP受体上都是共同激动剂。开发了39-氨基酸肽,以将GIP的代谢作用添加到T2D中GLP-1受体激动剂的既定临床益处[7]。在超级临床试验计划中,单独或与其他糖尿病疗法结合使用tirzepatide与临床上显着降低有关
摘要:胰岛素是饮食中燃料分子的主要代谢调节剂,例如碳水化合物,脂质和蛋白质。通过促进葡萄糖插入肝脏,脂肪组织和骨骼肌细胞的促进葡萄糖插入来做到这一点。其结果在骨骼肌和脂肪组织以及肝脏中的脂肪生成中受到糖化的影响。因此,胰岛素具有合成代谢作用,而相反,低胰岛素血症促进了反向过程。在糖尿病的晚期,肌细胞中的蛋白质分解也遇到。通过胰岛素和胰高血糖素的互动功能,保持生理条件下血糖水平的平衡。在胰岛素抵抗(IR)中,平衡受到干扰,因为细胞膜的葡萄糖转运蛋白(GLUT)无法对这种肽激素反应,这意味着葡萄糖分子不能内化到细胞中,其结果是高血糖症。要开发糖尿病的全部状态,IR应与胰腺β细胞释放胰岛素释放的损害有关。对高风险的个体进行周期性筛查,例如肥胖,高胆固醇血症和怀孕的无效妇女进行产前对照,至关重要,因为这些是检测胰岛素抵抗病例的重要检查点。这是至关重要的,因为IR可以逆转,只要通过健康的饮食习惯,定期运动和使用降血糖剂就可以在早期阶段检测到它。在这篇综述中,我们简要介绍了IR的病理生理学,病因,诊断,预防方法和管理。