Promicon项目旨在了解微生物组功能,以引导其表型生产生物聚合物,能量载体,原料和抗菌剂。它专注于使用高级数据挖掘,建模和机器学习分析关键物种和整个微生物。Promicon整合了合成生物学和代谢工程,以优化微生物群落以有效的代谢产物生产。该项目建立了一个标准化平台,用于定量单细胞和OMIC数据分析。其结果与欧盟的生物经济战略相吻合,促进了可持续的生物产品和循环经济。
Promicon项目旨在了解微生物组功能,以引导其表型生产生物聚合物,能量载体,原料和抗菌剂。它专注于使用高级数据挖掘,建模和机器学习分析关键物种和整个微生物。Promicon整合了合成生物学和代谢工程,以优化微生物群落以有效的代谢产物生产。该项目建立了一个标准化平台,用于定量单细胞和OMIC数据分析。其结果与欧盟的生物经济战略相吻合,促进了可持续的生物产品和循环经济。
抽象背景T细胞在抗肿瘤反应中起着核心作用。然而,它们通常在肿瘤微环境中面临许多障碍,包括缺乏可用的必需代谢物,例如葡萄糖和氨基酸。此外,癌细胞可以通过上调代谢物转运蛋白并维持高代谢率来垄断这些资源,从而繁殖和增殖,从而胜过T细胞。方法中,我们试图通过增强其与肿瘤细胞竞争的糖酵解能力来提高肿瘤附近的T细胞抗肿瘤功能。为了实现这一目标,我们设计了人类T细胞,以表达一种关键的糖酵解酶,磷酸果糖激酶与葡萄糖转运蛋白3(一种葡萄糖转运蛋白)结合使用。我们将它们与肿瘤特异性的嵌合抗原或T细胞受体共表达。与对照细胞相比,的结果工程细胞表明,T细胞激活标记物的细胞因子分泌增加和T细胞激活标记的上调。 此外,它们显示出上糖溶解的能力,在人类肿瘤的异种移植模型中转化为改善的体内治疗潜力。 总结,这些发现支持实施T细胞代谢工程,以增强细胞免疫疗法对癌症的疗效。的结果工程细胞表明,T细胞激活标记物的细胞因子分泌增加和T细胞激活标记的上调。此外,它们显示出上糖溶解的能力,在人类肿瘤的异种移植模型中转化为改善的体内治疗潜力。总结,这些发现支持实施T细胞代谢工程,以增强细胞免疫疗法对癌症的疗效。
摘要:微生物色素具有许多具有出色特征的结构和功能,例如可生物降解,无毒且对生态友好,构成了重要的颜料来源。工业生产提出了限制大规模商业化的生产成本的瓶颈。但是,由于其健康优势,微生物色素正在逐渐流行。使用行业副产品开发代谢工程和降低生物处理的成本为所有生产阶段的成本和质量提高开辟了可能性。因此,我们正在解决与微生物色素有关的几个点,包括发现的主要类别和结构,使用的优势,不同工业领域的生物技术应用,它们的特征及其对环境和社会的影响。
抽象背景T细胞在抗肿瘤反应中起着核心作用。然而,它们通常在肿瘤微环境中面临许多障碍,包括缺乏可用的必需代谢物,例如葡萄糖和氨基酸。此外,癌细胞可以通过上调代谢物转运蛋白并维持高代谢率来垄断这些资源,从而繁殖和增殖,从而胜过T细胞。方法中,我们试图通过增强其与肿瘤细胞竞争的糖酵解能力来提高肿瘤附近的T细胞抗肿瘤功能。为了实现这一目标,我们设计了人类T细胞,以表达一种关键的糖酵解酶,磷酸果糖激酶与葡萄糖转运蛋白3(一种葡萄糖转运蛋白)结合使用。我们将它们与肿瘤特异性的嵌合抗原或T细胞受体共表达。与对照细胞相比,的结果工程细胞表明,T细胞激活标记物的细胞因子分泌增加和T细胞激活标记的上调。 此外,它们显示出上糖溶解的能力,在人类肿瘤的异种移植模型中转化为改善的体内治疗潜力。 总结,这些发现支持实施T细胞代谢工程,以增强细胞免疫疗法对癌症的疗效。的结果工程细胞表明,T细胞激活标记物的细胞因子分泌增加和T细胞激活标记的上调。此外,它们显示出上糖溶解的能力,在人类肿瘤的异种移植模型中转化为改善的体内治疗潜力。总结,这些发现支持实施T细胞代谢工程,以增强细胞免疫疗法对癌症的疗效。
CRISPR-Cas 技术极大地改变了生物学领域。在这篇综述中,我们讨论了 CRISPR-Cas,特别关注了研究和使用最广泛的 CRISPR-Cas9 和 CRISPR-Cas12a 的相关技术和应用。我们讨论了 CRISPR-Cas 作为免疫防御系统的生物学机制、最近发现的抗 CRISPR-Cas 系统以及具有独特特征的新兴 Cas 变体(如 xCas9 和 Cas13)。然后,我们重点介绍了各种 CRISPR-Cas 生物技术,包括核酸酶依赖性基因组编辑、CRISPR 基因调控(包括 CRISPR 干扰/激活)、DNA/RNA 碱基编辑和核酸检测。最后,我们总结了生物技术在各种细菌物种的合成生物学和代谢工程中的最新应用。
无细胞的系统可以通过绕过与使用活细胞使用相关的麻烦需求来加快生物制造过程的设计和实施。尤其是,缺乏生存目标和无细胞反应的开放性质提供了工程方法,可以有目的的代谢通量方向。与基于细胞的对应物相比,使用基于裂解物的系统生产所需的小分子可能会导致竞争性滴度和生产力。但是,内源裂解物代谢中的路径串扰可以通过将碳流从所需的产物中转移而损害转化率。在这里,“基础 - 灌注 - 刷子”的常规代谢工程概念适应了一种无细胞的方法,可有效地将碳流从葡萄糖和内源性乙醇合成中引导。该方法很容易适应,相对较快,可以操纵细胞提取物中的中央代谢。在实施这种方法时,首先优化了块策略,从而使选择性酶从裂解物中去除到消除副产物形成活性的点,同时通过目标途径引导通量。这与无细胞的代谢工程方法相辅相成,这些方法可以操纵裂解物蛋白质组和反应环境,从而穿过瓶颈并向乙醇拉动通量。纳入这些块,推动和拉动策略的方法最大程度地提高了葡萄糖到乙醇的转化率,而大肠杆菌裂解物的乙醇裂解液则具有低乙醇的潜力。显示出10倍的提高百分比。据我们所知,这是成功重新布线溶液碳通量而没有源应变优化的第一份报告,并将消耗的输入底物完全转化为基于裂解物的无单元格系统中所需的输出产品。
摘要:蛋白质,原代代谢产物和化学物质的微生物生物合成正在增强势头,目前被视为工业研究部门的一种前进方法。对环境的威胁增加了,石油资产下降的可能性已将聚光灯转变为微生物细胞工厂(MCFS)。除了具有与化学合成相比的各种优势(例如毒性,更便宜的方法论和环境良性的性质)外,发酵罐还可以种植微生物,从而在工业相关性方面采用有效的生物处理方法。由于绝大多数生物多样性都是微生物,因此该评论首先凸显了工业上重要的微生物的微生物生物多样性。然后,纸张描绘了通过微生物求职者生成有价值的生物产品的生产途径。许多宿主细胞合成生物化合物作为其自然机制的一部分;但是,还开发了几种技术来从具有选定特性的非本地微生物中获得所需的最终产物。微生物生物合成途径可以归类为天然 - 现有途径,异源途径和人工途径。系统的代谢工程将代谢工程与进化工程,合成双学科和系统生物学整合在一起,进一步彻底改变了工程强大表型领域。这些策略的使用可改善菌株的性能,最终达到生物化学物质的高滴度和生产率。在本文中还简要讨论了用于利用本地途径和设计非本地创建途径的现代趋势和工具。fi-nce,综述讨论了使用微生物工作试力品来生产无数材料和化学物质,包括羧酸,氨基酸,植物天然产物(PNP),类胡萝卜素,口味和香料,揭示使用微生物物种生成可持续性生物生物生物生物生物生物的功效。
真菌聚酮化合物是一大批二级代谢产物,由于它们的药理活性多样,很有价值。纤维化真菌中的聚酮化合物生物合成提出了一些挑战:小产量和低纯度滴度。为了解决这些问题,我们改用了易于栽培的异源宿主的酵母Yarrowia Lipolytica。作为润滑脂酵母,脂溶作脂溶剂显示出用于脂质合成中使用的乙酰基和丙二酰-COA前体。同样,乙酰基和丙二酰辅酶A是许多天然聚酮化合物的基础,我们探索了将这种漏斗重定向到聚酮化合物生产的可能性。尽管有前途的前景,但Y. lipolytica到目前为止仅用于植物中简单的III型聚酮化合物合酶(PKS)的异源表达。因此,我们决定通过靶向由I型PKS合成的更复杂的真菌聚酮化合物来评估Y.脂溶液的潜力。我们采用了CRISPR-CAS9介导的基因组编辑方法来实现负责索拉尼(FSR1,FSR2和FSR2和FSR3)和6-甲基酸(6-MSA)生物合理的基因(FSR1,FSR2和FSR2)和6-甲基酸(6-MSA)生物合理的基因的基因整合。此外,我们通过代谢工程过度表达了两种参与脂质B氧化的酶TGL4和AOX2,从而尝试通过代谢工程进行优化,但我们没有观察到对聚酮化合物产生的影响。最大滴度为403 mg/L 6 msa和35 mg/L bostrycoidin,后者大大高于我们先前在酿酒酵母(2.2 mg/l)中的结果,这项工作证明了Y. lipolytica的潜力,是Y. lipolytica作为复杂型Fungal Polygal Polygelidides的杂同生产的平台。
生物融资工程生物制药工程BCHE 4650/6650动物细胞生物制造BCHE 4655/6655代谢工程和合成生物学BCHE 4710/6710 BIO-ELECTRECTROCICAL ENECTORICAL ENECTORIGHER ENECTORIGHER ENECTORIGHER ENECTORIGHER BCHE BCHE 4900特殊主管(BCH ENERIPER BCHE ERESTER INS TRECE STRECTER PRESED BCHECORICAL ERESTICE in BIOCOLICAL ERESES in BIOCOLICAL ERESERE)(3个小时)(3小时)/3小时; 4490/6490环境工程修复设计BIOE 4625组织工程 * Bioe 4740/6740生物材料 * Bioe/Chem 4615/6615软材料 * Engr 4490/6490可再生能源工程工程Engr 4900特殊主题(需要批准)