©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
在固态电解质(SSE)中使用金属有机框架(MOF)一直是一个非常有吸引力的研究领域,在现代世界中引起了广泛关注。SSE可以分为不同的类型,其中一些可以与MOF结合使用,以通过利用高表面积和高孔隙率来改善电池的电化学性能。但是,它也面临许多严重的问题和挑战。在这篇综述中,分类的不同类型的SSE类型,并描述了添加MOF后这些电解质的变化。之后,引入了这些带有MOF的SSE,以用于不同类型的电池应用,并描述了这些SSE与MOF结合在细胞电化学性能上的影响。最后,提出了MOFS材料在电池应用中面临的一些挑战,然后给出了一些解决MOF的问题和开发期望的解决方案。
摘要背景:焦虑症是最常见的精神障碍之一,但其潜在的生物学机制尚未完全阐明。近年来,遗传决定的代谢物(GDM)已被用来揭示精神障碍的生物学机制。然而,这种策略还没有应用于焦虑症。在此,我们通过孟德尔随机化研究探索了GDM与焦虑症的因果关系,总体目标是揭示生物学机制。方法:实施双样本孟德尔随机化(MR)分析以评估GDM与焦虑症的因果关系。以486种代谢物的全基因组关联研究(GWAS)为暴露对象,以焦虑症的四个不同的GWAS数据集为结果对象。值得注意的是,所有数据集均来自公开数据库。使用遗传工具变量(IV)探索每种代谢物的代谢物与焦虑症之间的因果关系。采用 MR Steiger 过滤法检验代谢物与焦虑症之间的因果关系。首先采用标准逆方差加权 (IVW) 方法进行因果关系分析,随后采用另外三种 MR 方法(MR-Egger、加权中值和 MR-PRESSO(多效性残差和与异常值)方法)进行 MR 分析的敏感性分析。使用 MR-Egger 截距和 Cochran's Q 统计分析评估可能的异质性和多效性。使用 Bonferroni 校正确定因果关联特征(P < 1.03 × 10 –4)。此外,使用基于网络的 MetaboAnalyst 5.0 软件进行代谢途径分析。所有统计分析均在 R 软件中完成。本研究使用了 STROBE-MR 清单来报告 MR 研究。结果:在 MR 分析中,确定了 85 个具有显著因果关系的 GDM。其中,4 个不同的焦虑症数据集中有 11 种代谢物相互重叠。Bonferroni 校正显示 1-亚油酰甘油磷酸乙醇胺(OR 固定效应 IVW = 1.04;95% CI 1.021–1.06;P 固定效应 IVW = 4.3 × 10 –5 )是最可靠的因果代谢物。由于采用了“留一法”分析,即使没有单个 SNP,我们的结果仍然稳健。MR-Egger 截距检验表明遗传多效性对结果没有影响(截距 = − 0.0013,SE = 0.0006,P = 0.06)。Cochran Q 检验未检测到异质性(MR-Egger. Q = 7.68,P = 0.742;IVW. Q = 12.12,P = 0.436)。 MR Steiger 进行的方向性测试证实了我们对潜在因果方向的估计
鼻腔内给药的一般概念基于这样的前提:这种非侵入性给药途径至少可以部分采用直接从鼻腔到脑的运输,从而避免肝脏快速代谢药物,绕过血脑屏障 (BBB) 的药物排斥,并最大限度地减少需要用药物充斥整个体循环以将足够高的药物浓度输送到脑病变的需要。13,14 然而,目前仍不清楚 POH/NEO100 的鼻腔内给药途径是否确实能够实现其关键目标,即使药物能够到达其预期的脑内肿瘤目标。这种确认至关重要,因为它将为以下模型提供急需的支持:鼻腔内 NEO100 是一种可行、更安全且可能更好的治疗脑癌患者的方法。在以下报告中,我们介绍了一例复发性 IV 级 IDH 突变型胶质瘤患者的病例,该患者接受鼻内 NEO100 治疗超过 3 年,并取得了良好的效果,并且再次手术使我们能够在 NEO100 给药后获得肿瘤组织,从而能够在肿瘤内检测 POH 及其代谢物 PA。
摘要基于 CRISPR 结构的转录调控因子扩展了我们重新编程植物内源基因表达的能力。它们的潜在应用之一是通过激活给定代谢途径中的选定酶来定制植物代谢组。使用之前描述的可多路复用的 CRISPR 激活剂 dCasEV2.1,我们测定了烟草叶中四种不同黄酮类化合物(即柚皮素、圣草酚、山奈酚和槲皮素)的选择性富集。在仔细选择目标基因和引导 RNA 组合后,我们为这四种代谢物中的每一种创建了成功的激活程序,每个程序激活 3 到 7 个基因,单个基因激活水平范围为 4 到 1500 倍。对每个多基因激活程序的黄酮类化合物谱进行代谢分析显示,目标代谢物及其糖基化衍生物的富集明显且具有选择性。值得注意的是,非目标代谢谱的主成分分析根据其活化处理清楚地区分了样品,而层次聚类将样品分成五组,对应于预期的四个高度富集的代谢物组和一个未活化的对照。这些结果表明,dCasEV2.1 是一种强大的工具,可以重新引导代谢通量以积累感兴趣的代谢物,为植物中代谢内容的定制设计打开了大门。
摘要。- 目的:合成的大主教(SC)是具有交感神经作用的新精神活性物质,它出现在非法药物市场中,以取代控制刺激物。由于每年都有更多的功能和有毒物质进入非法群体,因此需要分析方法能够在常规和非经常生物学基质中检测这些新化合物。我们试图通过超高的表现液化和高分辨率质谱法(UHPLC-HRMS)的超高表现色谱法(UHPLC-HRMS),为三十二个父级SC和两个代谢物的靶向筛查和定量方法。材料和方法:将20毫克的头发样品浸入250 µL的2 mm弹药甲酸甲酸甲酸甲酸甲酸甲酸盐,甲醇和乙腈混合物(50/25/25,V/V/V)中,并在40°C下孵育过夜。孵育后,将样品在氮流下蒸发至干燥,并用100 µL流动相混合物(A:B,80:20)和10 µL注入UHPLC-HRMS。使用全扫描和靶向数据依赖的MS/MS扫描采集的Q Extivetm焦点质谱仪用于筛选和定量分析。结果:针对所有分析物,该测定法的线性为5至500 pg/mg头发。日期和日期精度始终<15%,矩阵效应和分析恢复始终在可接受的标准范围内(分别为±25%和> 50%)。已开发的方法应用于SCS消费者的真实头发样本。最普遍的SC是3,4-甲基二氧 - α-吡咯烷 - 亚苯乙酮,浓度范围为6.0-1,000.0 pg/mg,以及α-吡咯烷二甲基甲酮现象 - 分别为54.0和554.0 pg/mg(分别为544.0 pg/mg),3-甲基和556 pg/mg-person和556.0.0.0.0.0.0.0.0.0.0.n.met nin。 4-甲基甲性马丁酮(11.5和448.0 pg/mg)
通信和材料请求请发送至 Sarkis Mazmanian,sarkis@caltech.edu 或 Brittany Needham,bneedham@caltech.edu。作者贡献:概念化:BDN、SKM。方法论:BDN、MF、MDA、ZW、W-LW、JH、MSL、JAG、CR、SJH、DPH。形式分析:BDN、MDA、ZW、JH。调查:BDN、MF、MDA、ZW、W-LW、JCB、CR、JH、SJH、QZ、MSL、YG。生化途径调查和菌株工程:MF、MAF。基因丰度分析:QZ、JCB、RK。fUSi 成像:CR、JCB、BDN、MGS。2DG 分析:ZW、BDN、YG、DPH。QuantSeq 分析:JH、W-LW、BDN、DHG。少突胶质细胞表征:BDN、MDA、JCB、MSL、JAG。ET:MSL、BDN、MDA。MRI/DTI:SJH、BDN。动物行为:BDN、MDA。资源:PJB、DG、DPH、MAF、RK、MGS、SKM。撰写原始草稿:BDN。撰写审核和编辑:BDN、MF、MDA、ZW、W-LW、JH、MSL、JAG、DPH、MAF、SKM。可视化:BDN、MF、MDA、ZW、W-LW、JH、JCB、CR、SJH、MSL、MAF。监督:SKM。项目管理:BDN。资金获取:BDN、WLW、PJB、SKM。
rouridine);阿拉伯核苷,例如阿拉伯派(Cytarabine,araC)[4],吉西他滨或2',2'-二氟 - Ro-2'-脱氧胞丁胺[5](图1)和几种嘌呤[6]和氟达拉滨[7]。它们的作用机理涉及核苷-5'-单磷酸盐作为主要活性化合物的形成。核苷单磷酸可以转化为相应的核苷-5'-T-二磷酸,然后通过DNA或RNA聚合酶将其掺入DNA或RNA中,并明显地[8]。一方面,修饰的DNA或RNA产生突变产生非功能基因组[9]。另一方面,核苷-5'-单磷酸可以直接与涉及核苷酸代谢的酶相互作用,从而导致核苷酸池的修饰。这反过来将散发突变的DNA和RNA的量。对于Exmape,Floxuridine单磷酸盐与胸苷酸合酶的辅助中心反应,从而产生不可恢复的共价键[10,11]。这种自杀的共价反应抑制了这种酶,从而减少了核苷酸池中胸苷磷酸盐。这种还原引入了无胸腺氨酸的细胞死亡[12,13]。另外,FDU,ARAC和吉西他滨修饰DNA,并可以吸收DNA拓扑异构酶[14]。
作者 L Zeng · 2021 · 被引用 65 次 — 在感染过程中,儿茶素是否会发生水解,以及儿茶素水解产生的 GA 是否能够起到防御病原体的作用,目前仍是猜测,...
图 2 顶部,3D FID-MRSI 重建代谢物体积,具有回顾性加速。完全采样采集(无加速)在 70 分钟内完成,加速因子对应于 k 空间欠采样并相应地减少采集时间(例如 3,24 分钟;6,12 分钟)。彩色图针对从 0 到第 95 个百分位数的每个代谢物范围单独缩放。底部,在所有加速因子下相对于未加速结果为每个代谢物图计算的归一化 RMSE 和 SSIM。显示了来自两个不同位置的样本光谱,它们随加速度(无、3、5)的变化很小。LCModel 拟合与拟合残差一起显示。左下方,整个大脑平均残差的 RMS 随加速度保持不变