摘要。- 目的:糖尿病(DM)介导的葡萄糖代谢受损,通过诱导高血糖和高胰岛素血症,胶质母细胞瘤(GB)风险。葡萄糖转移3(GLUT3)的整体膜转运蛋白促进葡萄糖转运至GB肿瘤细胞。我们旨在探索同时被诊断为DM的患者的GB肿瘤中GLUT3的调节。患者和方法:从93名GB患者中收集了福尔马林固定石蜡包裹(FFPE)肿瘤样品,并进行了回顾性分析。目前总共有15例患者被诊断为DM(GB-DM)。 通过分析其与Ki67,p53表达,MALAT1表达和周围血液血红蛋白A1C(HBA1C)水平的相关性,可以评估GLUT3在肿瘤攻击性中的作用。 T98G细胞用雌激素和Met- formin处理以调节GLUT3。 通过实时qPCR分析了GLUT3,SOX2和MALAT1的RNA升级。 通过Cobas C502分析仪测量T98G细胞的乳酸水平。 进行了刮擦伤口测定,以投资T98G细胞的迁移速率。 结果:GB-DM肿瘤中GLUT3的表达低于仅GB肿瘤。 在GB-dM中,肿瘤glut3和pe糖糖糖糖糖胶质蛋白(HBA1C)的表达与p53和ki67负相关。 降低的GLUT3缩短了GB-DM患者的无病生存期限。 empagli- flozin降低了glut3,而二甲双胍诱导的glut3在T98G细胞中。目前总共有15例患者被诊断为DM(GB-DM)。通过分析其与Ki67,p53表达,MALAT1表达和周围血液血红蛋白A1C(HBA1C)水平的相关性,可以评估GLUT3在肿瘤攻击性中的作用。T98G细胞用雌激素和Met- formin处理以调节GLUT3。 通过实时qPCR分析了GLUT3,SOX2和MALAT1的RNA升级。 通过Cobas C502分析仪测量T98G细胞的乳酸水平。 进行了刮擦伤口测定,以投资T98G细胞的迁移速率。 结果:GB-DM肿瘤中GLUT3的表达低于仅GB肿瘤。 在GB-dM中,肿瘤glut3和pe糖糖糖糖糖胶质蛋白(HBA1C)的表达与p53和ki67负相关。 降低的GLUT3缩短了GB-DM患者的无病生存期限。 empagli- flozin降低了glut3,而二甲双胍诱导的glut3在T98G细胞中。T98G细胞用雌激素和Met- formin处理以调节GLUT3。通过实时qPCR分析了GLUT3,SOX2和MALAT1的RNA升级。通过Cobas C502分析仪测量T98G细胞的乳酸水平。进行了刮擦伤口测定,以投资T98G细胞的迁移速率。结果:GB-DM肿瘤中GLUT3的表达低于仅GB肿瘤。在GB-dM中,肿瘤glut3和pe糖糖糖糖糖胶质蛋白(HBA1C)的表达与p53和ki67负相关。降低的GLUT3缩短了GB-DM患者的无病生存期限。empagli- flozin降低了glut3,而二甲双胍诱导的glut3在T98G细胞中。empagliflozin-Medi-抑制3抑制SOX2和MALAT1表达,并影响了T98G细胞的迁移能力。结论:我们的发现表明,GB-DM患者肿瘤的GLUT3表达低可能会诱导三磷酸腺苷(ATP)的产生。
沙门氏菌感染可导致禽类肠道炎症与代谢紊乱,但花生四烯酸(ARA)代谢是否参与沙门氏菌引起的肠道炎症尚不明确。本试验利用16s rDNA测序和靶向代谢组学技术研究了感染鼠伤寒沙门氏菌的海南文昌鸡盲肠菌群和ARA代谢的变化。研究结果表明,文昌鸡感染鼠伤寒沙门氏菌后盲肠组织中ARA代谢产物含量升高,包括前列腺素E2(PGE 2 )、前列腺素F2α(PGF 2 α)、脂氧素A4(LXA4)、±8(9)-EET、±11(12)-EET和±8,9-DiHETrE。感染沙门氏菌后,鸡盲肠组织中ARA生成和代谢的关键酶(磷脂酶A2 PLA2和环氧合酶-2 COX-2)含量增加。感染后炎症因子的相对mRNA水平也增加,包括干扰素-γ(IFN-γ)、转化生长因子-β1(TGF-β1)、白细胞介素-4(IL-4)和白细胞介素-6(IL-6)。在HD11细胞中,使用环氧合酶(COX)抑制剂可降低沙门氏菌感染引起的COX-2和PGF 2α水平升高,并有效降低炎症反应。此外,文昌鸡感染鼠伤寒沙门氏菌后,盲肠中有益菌属(如双歧杆菌、乳酸杆菌、臭杆菌)的数量显著减少。本研究揭示了鼠伤寒沙门氏菌感染文昌鸡盲肠菌群的结构。此外,本研究还证实了鼠伤寒沙门氏菌激活ARA环氧合酶代谢途径,进而介导文昌鸡肠道炎症的发生。研究结果可为禽科沙门氏菌病的防控提供数据支持和理论支撑。
基于光学晶格中超电原子的模拟量子模拟在量子多体系统的研究中催化了显着突破。这些模拟依赖于电子Fock状态的统计抽样,这些样子在经典算法中不易访问。在这项工作中,我们通过将Fock-State Update机制与辅助手段旁边的Fock-State更新机构集成在一起来修改行列式量子蒙特卡洛。此方法可以对Fock-State配置的有效采样。Fock-State限制性抽样方案进一步实现了多个合奏的预选,没有额外的计算成本,从而将模拟范围扩大到更通用的系统和模型。采用这种方法,我们将哈伯德模型的静态相关性分析为第四阶,并通过冷原子实验实现定量一致。Hubbard和Kondo-Lattice模型的动力学光谱模拟进一步证明了这种方法的可靠性和优势。
HER2阳性乳腺癌约占所有乳腺癌的15-20%,其特征是其侵略性复发,转移和生存降低。 尽管抗HER2疗法进展,但许多患者最初或在初始阳性反应后仍会面临治疗性抗药性,从而导致复发或疾病进展。 这项研究的主要重点是确定过氧化物酶体增殖物激活的受体伽马(PPARG)是通过建立HER2阳性乳腺癌的抗HER2药物耐药细胞系来降低药物敏感性的因素。 我们发现PPARG促进脂肪酸代谢并激活PI3K/AKT/MTOR信号通路。 PPARG过表达后抑制脂肪酸合成(FASN),有效阻止PI3K/AKT/MTOR途径的激活并增强细胞抗HER2药物敏感性。 PPARG抑制剂GW9662的共同给药已成为增强抗HER2疗法疗效的有前途的策略,从而为临床应用提供了潜力。HER2阳性乳腺癌约占所有乳腺癌的15-20%,其特征是其侵略性复发,转移和生存降低。尽管抗HER2疗法进展,但许多患者最初或在初始阳性反应后仍会面临治疗性抗药性,从而导致复发或疾病进展。这项研究的主要重点是确定过氧化物酶体增殖物激活的受体伽马(PPARG)是通过建立HER2阳性乳腺癌的抗HER2药物耐药细胞系来降低药物敏感性的因素。我们发现PPARG促进脂肪酸代谢并激活PI3K/AKT/MTOR信号通路。PPARG过表达后抑制脂肪酸合成(FASN),有效阻止PI3K/AKT/MTOR途径的激活并增强细胞抗HER2药物敏感性。PPARG抑制剂GW9662的共同给药已成为增强抗HER2疗法疗效的有前途的策略,从而为临床应用提供了潜力。
三阴性乳腺癌(TNBC)是乳腺癌的亚型,没有靶向治疗。不幸的是,多达70%的TNBC患者会产生对治疗的抗药性。对化学抗性的已知贡献者是线粒体凋亡信号传导功能失调。我们设置了一个表型小分子筛选,以揭示与线粒体凋亡无关的TNBC细胞中的脆弱能力。使用功能遗传方法,我们确定了“命中”化合物BAS-2具有与组蛋白脱乙酰基酶抑制剂(HDAC)的潜在相似作用机理。一种体外HDAC抑制剂测定法证实了该化合物选择性抑制HDAC6。使用最新的乙酰基团质谱法,我们确定了TNBC细胞中HDAC6的糖酵解底物。我们证实,HDAC6的抑制作用或敲除体外和体内都会降低糖酵解代谢。通过一系列公正的筛选方法,我们确定了HDAC6在调节糖酵解代谢中的先前未鉴定的作用。
微生物群 - 脑轴在神经精神疾病中起关键作用,尤其是在抑郁症中。依西妥位(ESC)是第一线抗抑郁药,但是,其在抑郁症治疗中对微生物群轴轴的调节机制尚不清楚。使用Wistar-Kyoto(WKY)大鼠的强制游泳测试评估了ESC的抗抑郁作用,而肠道和大脑区域的损伤是通过H&E染色和免疫组织化学评估的。通过肠道菌群的16S rRNA测序,血清未靶向的代谢组学和海马蛋白质组学研究了具有抑郁行为的WKY大鼠的治疗机制。结果表明,ESC干预改善了抑郁样的行为,这可以通过WKY大鼠的游泳时间增加,还恢复了肠道渗透性和脑组织完整性。肠道菌群组成的显着变化,尤其是细菌型果胶的增加,以及血清鞘脂代谢物(鞘氨酸1-磷酸盐,鞘氨醇,鞘氨酸-1-磷酸盐)和海马蛋白(Sptlc1,Enpp5,Enpp5,Enpp5,eNPPE2),是ENPPP2,是ENPPP2,是ENPPE2,是ENPPE2,是ENPP2,是ENPEP2,是ENPP2,是ENPP2,是ENPP2,是ENPP2,是ENPP2,是ENPP2,是ENPP2,是ENPP2)这些可靠的相关性表明,ESC可以通过通过肠道微生物群的影响来调节鞘脂代谢来发挥其抗抑郁作用。因此,这项研究阐明了ESC抗抑郁药的效率的基础,并突出了微生物群 - 脑轴轴心在介导这些作用中的关键重要性。
Almuhaideb,A.,Papathanasiou,N。和Bomanji,J。(2011)。肿瘤学中的18 F-FDG PET/CT成像。沙特医学史,31(1),3 - 13。Bednarik,P.,Goranovic,D.,Svatkova,A.,Niess,F.,Hingerl,L.,Strasser,B.,Deelchand,D.K.,Spurny-Dworak,B.,Krssak,B.,Krssak,B.,Krssak,M.,Trattnig,M.(1)h磁共振光谱成像在人脑7 t处的氘化葡萄糖和神经递质代谢的代谢。自然生物 - 医学工程,7(8),1001 - 1013。Chiew,M.,Jiang,W.,Burns,B.,Larson,P.,Steel,A.,Jezzard,P.,Albert Thomas,M。,&Emir,U。E.(2018)。 密度加权同心环的k空间轨迹(1)h磁共振光谱成像在生物医学中的7 t nmr,31(1),e3838。 Clarke,W。T.和Chiew,M。(2022)。 使用低级别方法对MRSI的降解的不确定性。 医学中的磁共振,87(2),574 - 588。 Clarke,W。T.,Hingerl,L.,Strasser,B.,Bogner,W.,Valkovic,L。,&Rodgers,C。T.(2023)。 使用同心环对人心脏的三维,2.5分钟的7T磷磁共振成像。 生物医学中的 nmr,36(1),e4813。 Cocking,D.,Damion,R。A.,Franks,H.,Jaconelli,M.,Wilkinson,D.,Brook,M.,Auer,D.P。,&Bowtell,R。(2023)。 d(2)o给药期间7T处的氘脑成像。 医学中的磁共振,89(4),1514 - 1521。 Crameri,F。,Shephard,G。E.和Heron,P。J. (2020)。 滥用科学传播中的色彩。 (2018)。Chiew,M.,Jiang,W.,Burns,B.,Larson,P.,Steel,A.,Jezzard,P.,Albert Thomas,M。,&Emir,U。E.(2018)。密度加权同心环的k空间轨迹(1)h磁共振光谱成像在生物医学中的7 t nmr,31(1),e3838。Clarke,W。T.和Chiew,M。(2022)。使用低级别方法对MRSI的降解的不确定性。医学中的磁共振,87(2),574 - 588。Clarke,W。T.,Hingerl,L.,Strasser,B.,Bogner,W.,Valkovic,L。,&Rodgers,C。T.(2023)。使用同心环对人心脏的三维,2.5分钟的7T磷磁共振成像。nmr,36(1),e4813。Cocking,D.,Damion,R。A.,Franks,H.,Jaconelli,M.,Wilkinson,D.,Brook,M.,Auer,D.P。,&Bowtell,R。(2023)。d(2)o给药期间7T处的氘脑成像。医学中的磁共振,89(4),1514 - 1521。Crameri,F。,Shephard,G。E.和Heron,P。J.(2020)。滥用科学传播中的色彩。(2018)。自然通讯,11(1),5444。de feyter,H。M.,Behar,K。L.,Corbin,Z。A.,Fulbright,R。K.,Brown,P.B.,McIntyre,S.,Nixon,T。W.,Rothman,D。L.和De Graaf,R。A. 用于基于MRI的3D代谢的代谢成像(DMI)的代谢成像(DMI)。 Science Advances,4(8),EAAT7314。 de Graaf,R。A.,Pan,J.W.,Telang,F.,Lee,J.H.,Brown,P.,Novotny,E.J.,Hetherington,H.P。,&Rothman,D。L.(2001)。 在人脑灰质和白质中glu-cose运输的差异。 典型的血液流量和代谢杂志,21(5),483 - 492。DeGraaf,R。A.,Thomas,M。A.,Behar,K。L.,&de Feyter,H。M.(2021)。 在基于氘的同位素标记研究中的动力学同位素效应和标记损失的表征。 ACS化学神经科学,12(1),234 - 243。DeWinter,J.C。F.(2013)。 使用学生的t检验,其样本量极小。 实践评估,研究和评估,18(10)。 Dienel,G。A. (2019)。 脑葡萄糖代谢:能量学与功能的整合。 生理评论,99(1),949 - 1045。 Furuyama,J。K.,Wilson,N。E.和Thomas,M。A. (2012)。 光谱成像在体内使用强烈的圆形回声平面轨迹。 医学中的磁共振,67(6),1515 - 1522。A.,Fulbright,R。K.,Brown,P.B.,McIntyre,S.,Nixon,T。W.,Rothman,D。L.和De Graaf,R。A.用于基于MRI的3D代谢的代谢成像(DMI)的代谢成像(DMI)。Science Advances,4(8),EAAT7314。 de Graaf,R。A.,Pan,J.W.,Telang,F.,Lee,J.H.,Brown,P.,Novotny,E.J.,Hetherington,H.P。,&Rothman,D。L.(2001)。 在人脑灰质和白质中glu-cose运输的差异。 典型的血液流量和代谢杂志,21(5),483 - 492。DeGraaf,R。A.,Thomas,M。A.,Behar,K。L.,&de Feyter,H。M.(2021)。 在基于氘的同位素标记研究中的动力学同位素效应和标记损失的表征。 ACS化学神经科学,12(1),234 - 243。DeWinter,J.C。F.(2013)。 使用学生的t检验,其样本量极小。 实践评估,研究和评估,18(10)。 Dienel,G。A. (2019)。 脑葡萄糖代谢:能量学与功能的整合。 生理评论,99(1),949 - 1045。 Furuyama,J。K.,Wilson,N。E.和Thomas,M。A. (2012)。 光谱成像在体内使用强烈的圆形回声平面轨迹。 医学中的磁共振,67(6),1515 - 1522。Science Advances,4(8),EAAT7314。de Graaf,R。A.,Pan,J.W.,Telang,F.,Lee,J.H.,Brown,P.,Novotny,E.J.,Hetherington,H.P。,&Rothman,D。L.(2001)。 在人脑灰质和白质中glu-cose运输的差异。 典型的血液流量和代谢杂志,21(5),483 - 492。DeGraaf,R。A.,Thomas,M。A.,Behar,K。L.,&de Feyter,H。M.(2021)。 在基于氘的同位素标记研究中的动力学同位素效应和标记损失的表征。 ACS化学神经科学,12(1),234 - 243。DeWinter,J.C。F.(2013)。 使用学生的t检验,其样本量极小。 实践评估,研究和评估,18(10)。 Dienel,G。A. (2019)。 脑葡萄糖代谢:能量学与功能的整合。 生理评论,99(1),949 - 1045。 Furuyama,J。K.,Wilson,N。E.和Thomas,M。A. (2012)。 光谱成像在体内使用强烈的圆形回声平面轨迹。 医学中的磁共振,67(6),1515 - 1522。de Graaf,R。A.,Pan,J.W.,Telang,F.,Lee,J.H.,Brown,P.,Novotny,E.J.,Hetherington,H.P。,&Rothman,D。L.(2001)。在人脑灰质和白质中glu-cose运输的差异。典型的血液流量和代谢杂志,21(5),483 - 492。DeGraaf,R。A.,Thomas,M。A.,Behar,K。L.,&de Feyter,H。M.(2021)。在基于氘的同位素标记研究中的动力学同位素效应和标记损失的表征。ACS化学神经科学,12(1),234 - 243。DeWinter,J.C。F.(2013)。使用学生的t检验,其样本量极小。实践评估,研究和评估,18(10)。Dienel,G。A.(2019)。脑葡萄糖代谢:能量学与功能的整合。生理评论,99(1),949 - 1045。Furuyama,J。K.,Wilson,N。E.和Thomas,M。A.(2012)。光谱成像在体内使用强烈的圆形回声平面轨迹。医学中的磁共振,67(6),1515 - 1522。
BE,Pengpenng等。 天然医学(2014年)江,Chunhui等。 frontis in Endocrynology(2015)Jiang,Chunhui等。 分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)天然医学(2014年)江,Chunhui等。 frontis in Endocrynology(2015)Jiang,Chunhui等。 分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)frontis in Endocrynology(2015)Jiang,Chunhui等。 分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)分子疗法(2017)Huang,The等。 内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)内分泌与代谢的趋势(2019)Huang,The等。 Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)Iscience(2020)Huang,The等。 药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)药品研究(2020)Sharifi,Farrokh等。 肥胖30(2022)肥胖30(2022)
近年来,放射性治疗领域已大大提高,主要是由靶向生长抑素受体的B摄取疗法 - 表达肿瘤和前列腺特异性膜抗原。现在,由于其高线性能量和人类组织中的短范围,因此正在进行更多的临床试验,以评估一个具有较高效率的潜在下一代治疗学。In this review, we summarize the important studies ranging from the fi rst Food and Drug Administration – approved a -therapy, 223 Ra-dichloride, for treatment of bone metastases in castration-resistant prostate cancer, including concepts in clinical translation such as targeted a -peptide receptor radiotherapy and 225 Ac-PSMA-617 for treatment of prostate cancer, innovative therapeutic models evaluating new靶标和组合疗法。靶向A疗法是新型靶向癌症治疗中最有希望的领域之一,对神经内分泌肿瘤和转移性前列腺癌进行了几项早期和晚期临床试验,以及在其他早期相位研究中的显着兴趣和投资。一起,这些研究将有助于我们了解靶向治疗的短期和长期毒性,并有可能识别合适的治疗组合伴侣。
1 <韩国共和国苏旺的阿乔大学医学院2移植手术和研究所移植研究所,韩国首尔大学尔大学医学院,韩国共和国尤因大学医学院,Yonse Yonse University wonju Servery of Ruseculy of Recuneion of Recuneion of Recuneion of Repucy of Repucy of Repucye of Repucy韩国,韩国5号国立大学医学院5大韩民国Goyang的Ilsan Paik医院,大韩民国韩国大学医学院10外科,大韩民国,<韩国共和国苏旺的阿乔大学医学院2移植手术和研究所移植研究所,韩国首尔大学尔大学医学院,韩国共和国尤因大学医学院,Yonse Yonse University wonju Servery of Ruseculy of Recuneion of Recuneion of Recuneion of Repucy of Repucy of Repucye of Repucy韩国,韩国5号国立大学医学院5大韩民国Goyang的Ilsan Paik医院,大韩民国韩国大学医学院10外科,大韩民国,<韩国共和国苏旺的阿乔大学医学院2移植手术和研究所移植研究所,韩国首尔大学尔大学医学院,韩国共和国尤因大学医学院,Yonse Yonse University wonju Servery of Ruseculy of Recuneion of Recuneion of Recuneion of Repucy of Repucy of Repucye of Repucy韩国,韩国5号国立大学医学院5大韩民国Goyang的Ilsan Paik医院,大韩民国韩国大学医学院10外科,大韩民国,<韩国共和国苏旺的阿乔大学医学院2移植手术和研究所移植研究所,韩国首尔大学尔大学医学院,韩国共和国尤因大学医学院,Yonse Yonse University wonju Servery of Ruseculy of Recuneion of Recuneion of Recuneion of Repucy of Repucy of Repucye of Repucy韩国,韩国5号国立大学医学院5大韩民国Goyang的Ilsan Paik医院,大韩民国韩国大学医学院10外科,大韩民国,<韩国共和国苏旺的阿乔大学医学院2移植手术和研究所移植研究所,韩国首尔大学尔大学医学院,韩国共和国尤因大学医学院,Yonse Yonse University wonju Servery of Ruseculy of Recuneion of Recuneion of Recuneion of Repucy of Repucy of Repucye of Repucy韩国,韩国5号国立大学医学院5大韩民国Goyang的Ilsan Paik医院,大韩民国韩国大学医学院10外科,大韩民国,<韩国共和国苏旺的阿乔大学医学院2移植手术和研究所移植研究所,韩国首尔大学尔大学医学院,韩国共和国尤因大学医学院,Yonse Yonse University wonju Servery of Ruseculy of Recuneion of Recuneion of Recuneion of Repucy of Repucy of Repucye of Repucy韩国,韩国5号国立大学医学院5大韩民国Goyang的Ilsan Paik医院,大韩民国韩国大学医学院10外科,大韩民国,<韩国共和国苏旺的阿乔大学医学院2移植手术和研究所移植研究所,韩国首尔大学尔大学医学院,韩国共和国尤因大学医学院,Yonse Yonse University wonju Servery of Ruseculy of Recuneion of Recuneion of Recuneion of Repucy of Repucy of Repucye of Repucy韩国,韩国5号国立大学医学院5大韩民国Goyang的Ilsan Paik医院,大韩民国韩国大学医学院10外科,大韩民国,<韩国共和国苏旺的阿乔大学医学院2移植手术和研究所移植研究所,韩国首尔大学尔大学医学院,韩国共和国尤因大学医学院,Yonse Yonse University wonju Servery of Ruseculy of Recuneion of Recuneion of Recuneion of Repucy of Repucy of Repucye of Repucy韩国,韩国5号国立大学医学院5大韩民国Goyang的Ilsan Paik医院,大韩民国韩国大学医学院10外科,大韩民国,<韩国共和国苏旺的阿乔大学医学院2移植手术和研究所移植研究所,韩国首尔大学尔大学医学院,韩国共和国尤因大学医学院,Yonse Yonse University wonju Servery of Ruseculy of Recuneion of Recuneion of Recuneion of Repucy of Repucy of Repucye of Repucy韩国,韩国5号国立大学医学院5大韩民国Goyang的Ilsan Paik医院,大韩民国韩国大学医学院10外科,大韩民国,