人工智能 (AI) 的迅猛发展吸引了人们对其在各个领域的应用的兴趣,医疗保健领域也不例外。理论和学习算法的技术进步以及通过海量数据集进行处理的可用性,使计算系统在医学领域取得了突破。人工智能可以潜在地指导临床医生和从业者在处理病例和做出诊断时做出适当的决定,因此其应用在医学领域得到了广泛的传播。因此,计算机算法使预测变得如此简单和准确。这是因为人工智能甚至可以向许多患者准确提供信息。此外,人工智能的子集,即机器学习 (ML) 和深度学习 (DL) 方法,有助于从海量数据集中检测复杂模式并使用这些模式进行预测。尽管面临诸多挑战,但人工智能在妇产科的应用仍取得了令人瞩目的发展。因此,本综述提出探索在妇产科中实施人工智能,以改善结果和临床经验。在此背景下,本综述阐明了人工智能的演变和进展、人工智能在妊娠不同阶段超声诊断中的作用、临床益处、产后早产以及人工智能在妇科中的应用,并提出了未来的建议。
摘要 人工智能 (AI) 算法甚至在美学等创造性领域也取得了令人瞩目的成就。然而,机器学习 (ML) 社区之外的人是否能够充分解释或同意他们的结果,特别是在这种高度主观的领域,受到质疑。在本文中,我们试图了解不同的用户社区如何在主观领域推理 AI 算法结果。我们设计了 AI Mirror,这是一个研究探测器,可以告诉用户算法预测的照片美学分数。我们对该系统进行了用户研究,共有来自三个不同群体的 18 名参与者:AI/ML 专家、领域专家(摄影师)和普通公众成员。他们通过出声思考、调查和访谈等方式执行了拍照和推理 AI Mirror 预测算法的任务。结果表明:(1)用户使用自己特定群体的专业知识来理解 AI;(2)用户采用各种策略来缩小他们的判断与 AI 预测之间的差距;(3)用户的想法和 AI 预测之间的差异与用户对 AI 的可解释性和合理性的感知呈负相关。我们还讨论了主观领域中 AI 注入系统的设计考虑因素。
摘要:在传统上由西方强国主导的全球音乐领域,韩国音乐产业在过去二十年中已成为一股强大的力量,取得了令人瞩目的里程碑。这一成功的核心在于练习生制度,这是韩国集体主义文化的体现,为该行业的快速工业化奠定了坚实的基础。本文采用文献分析法,探讨韩国音乐产业模式对推动韩国音乐走向全球舞台的重大影响。它还深入探讨了该行业未来的潜在发展,探讨了保持其独特身份与适应不断变化的全球音乐格局之间的平衡。研究发现,该行业对技术进步的战略性利用促进了高效生产线的建立,巩固了其作为高产出和高回报强国的地位。韩国音乐产业的先进性和集体性使其具备了有效应对各种挑战所必需的韧性和适应性。然而,该行业依赖于同质化和流水线式的造星和音乐制作方式引发了人们的担忧,因为这可能会抑制艺术创造力并导致韩国音乐缺乏多样性。
当我思考 NSWC 达尔格伦师的未来五年时,我想起了索伦·克尔凯郭尔的一句话:“生活只能向后看才能理解,但必须向前看才能生活。”我们都应该对未来五年充满期待和兴奋,因为我们在过去五年中取得的成就确实令人瞩目。我们带领海军实施了新的武器系统;我们有效地教会了海军如何将硬件与软件分开;我们采用了私营部门创建和执行的流程和程序,并将其作为政府内部的主流。我们引入了计算技术、数据科学、威胁工程、任务工程和分析方面的进步。我们的人员已被招募来承担我们国家面临的一些最困难的技术任务和挑战。在过去五年里,达尔格伦将资源集中在提高我们的综合战争专业知识上。我们因坚持技术严谨性和纪律而得到了利益相关者的认可,并且我们正在与这些组织合作,帮助我们进一步努力以更快、更高效、更具成本效益的方式将能力交到我们的水兵和海军陆战队员手中。
里德堡原子拥有远离原子阳离子的高度激发价电子。[1,2] 与基态原子相比,它们表现出夸张的特性,例如非常大的电偶极矩,这可以促进与宏观外部场甚至来自附近粒子的微观电磁场的强烈相互作用。这些相互作用可以通过静态电场或磁场、激光或微波场来控制,使里德堡原子系统成为实现可控量子多体模拟器的理想选择。过去几十年来,在中性原子系统方面取得了令人瞩目的实验进展,包括超冷原子气体的制备[3,4]、单原子的高分辨率成像[5,6]、可重构光镊阵列中单个原子的捕获[7-9],高激发里德堡态的迷人特性被令人信服地揭示出来,使其成为最受欢迎的中性原子量子信息处理 (QIP) 平台。大量 QIP 涉及量子计算和量子模拟,旨在解决传统计算机难以解决的复杂问题。为实现量子计算和量子模拟而寻求的物理候选物范围包括
更广泛的背景 在这项工作中,我们介绍了一种可再生氢运输的创新方法,它可能对未来的全球氢经济产生重大影响。我们早就知道氢,特别是“绿色”氢,作为清洁能源的载体有着巨大的前景。然而,储存和运输这种难以捉摸的能源载体的挑战仍然存在。为了解决这些障碍,我们的研究团队对现有商品进行了新的审视:我们提出二甲醚 (DME)/CO 2 储存循环作为长距离点对点氢运输的潜在游戏规则改变者。DME 用作氢载体,而 CO 2 (在目的地释放氢的偶联产物) 同时在同一容器中运输回以实现可持续再利用。该方法在关键指标上优于目前的领先者氨和甲醇,在能源效率、质量流量、水消耗和毒理学风险降低方面具有令人瞩目的优势。通过有效解决全球氢气运输面临的最大障碍之一,我们希望我们的研究成果能够激发进一步的研究和创新,以实现具有成本效益的全球氢气交易,从而实现全球完全去化石能源系统。
摘要 —人工智能 (AI) 在语音处理、图像分类到药物发现等众多领域取得了令人瞩目的突破。这得益于数据的爆炸式增长、机器学习 (尤其是深度学习) 的进步以及强大计算资源的便捷获取。特别是,边缘设备 (如物联网设备) 的大规模部署产生了前所未有的数据规模,这为在网络边缘推导准确模型和开发各种智能应用提供了机会。然而,由于信道质量参差不齐、流量拥塞和/或隐私问题以及巨大的能耗,如此庞大的数据无法全部发送到云端进行处理。通过将 AI 模型的推理和训练过程推送到边缘节点,边缘 AI 已成为一种有前途的替代方案。边缘 AI 需要边缘设备 (如智能手机和智能汽车) 与无线接入点和基站的边缘服务器之间的密切合作,但这会导致繁重的通信开销。在本文中,我们全面概述了克服这些通信挑战的各种技术的最新发展。具体来说,我们首先确定了边缘 AI 系统中的关键通信挑战。然后,我们从算法和系统的角度介绍了用于网络边缘训练和推理任务的通信高效技术。我们还强调了未来的潜在研究方向。
I. 引言 1. 历史背景和技术演变 轻于空气 (LTA) 的飞行器包括飞艇和浮空器,代表了人类对空中运动的持续探索的一个独特篇章。飞艇以其动力和可操纵的特性而著称,它通过公认的浮力原理获得升力。而浮空器则是依靠风或绞盘移动的系留结构 [1]。LTA 技术的历史轨迹是一段令人瞩目的演变历程。1783 年,法国的蒙哥尔菲兄弟开创了热气球飞行,这一事件引起了全球的关注 [2],标志着其关键时刻到来。20 世纪初,硬式飞艇达到顶峰,以雄伟的齐柏林飞艇为代表。这些庞然大物主宰着跨洲客运旅行,为新兴的飞机提供了一种豪华而又风景优美的替代方案。然而,1937 年的兴登堡号灾难性事故留下了长期阴影,导致飞艇的普及度大幅下降 [3]。2. 重振 LTA 技术:材料进步的作用尽管历史上遭遇挫折,但 LTA 飞行器的内在潜力从未完全消失。材料科学和工程领域的最新突破正在推动飞艇的复兴
从现代大规模生产工业部门的演变来看,一个行业的建立可以按照四个概念阶段的典型顺序进行:引入阶段,引入新的技术概念;增长阶段,以产品或服务的形式应用这一概念;成熟阶段,产品的直接使用和产品支持的服务的出现建立了新的经济部门;最终的衰退阶段,出现一个或多个替代产品。大多数当前的工业产品都可以被视为系统。应用既定的概念,例如可互换零件,使企业能够大规模制造系统,以可承受的价格向社会提供复杂的产品。产品在社会经济环境中的大量可用性有利于以创新方式使用该产品,其中许多方式是前所未有的。这样,将创新产品引入市场可能会随着时间的推移催生一个全新的行业,该行业可能通过产品的不断发展或应用范围的扩大而实现增长。近年来,航天工业取得了令人瞩目的发展。本文提供的数据表明,全球卫星航天产业正从增长阶段向成熟阶段过渡。本文将论证,鉴于巴西目前的地位,进入壁垒仍然处于允许巴西参与全球航天产业的水平。
结直肠癌(CRC)是高发病率和致死率的恶性肿瘤之一,大多数患者诊断时已为晚期。CRC的治疗主要包括手术、化疗、放疗和分子靶向治疗,尽管这些方法提高了CRC患者的总生存期(OS),但晚期CRC的预后仍然不佳。近年来,肿瘤免疫治疗取得了令人瞩目的突破,特别是免疫检查点抑制剂(ICIs)治疗,为肿瘤患者带来了长期生存益处。随着临床数据的不断丰富,ICIs在治疗高微卫星不稳定/错配修复缺陷(MSI-H/dMMR)晚期CRC中取得了显著疗效,但目前ICIs对微卫星稳定(MSS)晚期CRC患者的治疗效果并不令人满意。随着全球范围内越来越多的大型临床试验进行,接受ICIs治疗的患者也会出现免疫治疗相关的不良事件和治疗耐药。因此,仍需要大量的临床试验来评估ICIs治疗晚期结直肠癌的疗效和安全性。本文将重点介绍目前ICIs在晚期结直肠癌中的研究现状,并探讨当前ICIs治疗的困境。