• 3D 合成视觉 – 在主飞行显示器 (PFD) 上实时显示三维地形、障碍物和交通状况。• 空中高速公路 (HITS) 导航 – 根据当地地形和飞机位置,在 PFD 上为飞机提供 3D 高速公路供其飞行。PFD 上显示一系列不断减小的方块,供直升机飞行。• 地理参考悬停矢量 – 允许您悬停在已知点上。• 直升机地形感知系统 (HTAWS) – 全球地形数据库与 GPS 位置相结合。• 图形飞行管理系统 (FMS) – 中央导航和通信管理系统。• 全彩色、高分辨率、阳光下可读(1,000 尼特)LCD 屏幕,亮度完全可调 • 双重冗余背光 • 输入:ADHRS、GPS 接收器(全部包含) • DO-178B、A 级软件 – 最高批准级别是 IFR 许可的关键要素。• NVIS-A 和 NVIS-B 夜视镜兼容性 • 最后五次飞行的数字飞行性能记录 • 冗余显示器/传感器架构 – 显示器故障将恢复到主飞行显示器。• 符合 RNP 0.3/BRNAV/PRNAV 标准 – 允许飞机使用 GPS 进行精确导航。
摘要:太阳能不仅是地球上最丰富的能量,而且还可以续签。这种能量的使用主要通过光伏技术非常迅速地扩展。但是,电力存储仍然是解决太阳资源可变性的瓶颈。因此,当需要存储能量时,太阳能热能就会特别感兴趣,因为热能存储比电力存储便宜得多。本文的目的是简短更新CSP(浓缩太阳能)市场,截至2023年。它基于CSP-GURU数据库,该数据库列出了有关世界各地CSP发电厂的信息。尽管此数据库是打开的,但发现上解析分析并不容易。提出了这种扩展技术的概述,并提供了具有最重要信息的可读数字。这包括全球安装能力的演变以及即将到来的项目(正在建设)和技术趋势。讨论了存储能力和工作温度的演变。还提供了投资成本和电力成本,以获取可靠的数据以与其他能源技术进行比较。特定的土地要求以及整体效率。在本文中讨论了相关示例。最终,它概述了CSP景观的演变,其有用的信息用于科学和教育目的。
超越了具有复杂几何形状的零件的近网形制造,添加剂制造(AM)使得可以制造具有独特的特定地点微观结构的材料。此功能是AM独有的,并且可以使以前无法实现的构建材料的设计。在这里,我们利用此策略将数据用微结构作为存储信息的介质将数据编码为金属零件。我们使用一种新型的激光扫描技术来控制激光粉末床融合过程中的局部固化条件,并将线性条形码和快速响应(QR)代码嵌入不锈钢316 L.使用不同晶体学纹理的块。数据可以通过对局部微观结构敏感的分析技术来检索数据。作为演示,我们通过使用称为方向反射显微镜的技术从其蚀刻表面测量光光的散射来解码条形码。所产生的纹理图可以通过传统的条形码扫描仪可读,例如手机上的纹理图。嵌入数据的能力在执法,生物医学和运输等领域具有巨大的潜力,在执法,生物医学和运输中,永久耐损害的跟踪至关重要。
摘要:自然语言处理(NLP)是一种将人类语言转化为机器可读数据的技术,正在革新许多领域,包括癌症护理。本综述概述了NLP的演变及其为癌症患者制定个性化治疗途径的潜力。利用NLP将非结构化医学数据转换为结构化的可学习格式的能力,研究人员可以利用大数据的临床和研究应用程序的潜力。NLP的重大进步激发了人们对开发工具的兴趣,这些工具可以自动从临床文本中提取信息,从而有可能改变放射肿瘤学的医学研究和临床实践。所讨论的应用包括症状和毒性监测,确定健康的社会决定因素,改善患者 - 物理学的沟通,患者教育和预测性建模。然而,一些挑战阻碍了NLP收益的全面实现,例如隐私和安全问题,NLP模型中的偏见以及这些模型的可解释性和一般性性。克服这些挑战需要计算机科学家与辐射肿瘤学社区之间的合作努力。本文是理解NLP算法的复杂性,其绩效评估,过去的研究贡献以及NLP的未来的综合指南。关键字:人工智能,个性化医学,放射疗法,自然语言处理
摘要 本研究考察了《超越信仰:皈依者中的伊斯兰之旅》中四个国家(印度尼西亚、伊朗、巴基斯坦和马来西亚)的社区。该书通过“我”的角色将穆斯林描绘成一个权威的叙述者,奈保尔试图证明叙述中的表述反映了他自己的观点。尽管这些国家的穆斯林社会经常被负面描述,但奈保尔的目标是记录穆斯林社区中未被记录的方面。他努力使伊斯兰教“可读”,这一点在整部作品中都很明显,然而,这些努力在那些受到这种描述的人中唤起了一种无力感,他们无法表达自己的叙述。从达瓦研究的角度来看,这项研究的意义在于批判性地评估边缘化穆斯林声音的外部叙述。通过解构这些表述,本研究强调了恢复真实的伊斯兰身份和反对歪曲陈述的重要性。此外,它还引发了人们对 da'wah 如何回应外部叙述的思考,从而促进在支离破碎的全球社会中对伊斯兰教有更准确、更公正的理解。关键词:超越信仰;da'wah;伊斯兰身份;伊斯兰代表;穆斯林社会。
摘要公平数据点在满足公平原则的努力中起着越来越重要的作用。它为机器提供了对不同类型数字对象的元数据的可读访问。在本文中,我们关注数据集的元数据。自首次参考实施以来,已经开发了更量身定制的实现,并将其部署在医疗保健和生命科学领域。但是,这些越来越多的公平数据点实例和发布的数据集带来的问题是从大量资源中可以找到相关数据集。为了有效查找相关数据集,我们需要利用其元数据的丰富性和良好的排名算法。在本文中,我们报告了公平数据点参考实现的搜索和排名功能的增强。具体来说,我们通过在类术语之间创建关联和班级描述和标签中经常出现的单词来提高其语义搜索能力。我们还对搜索结果实现了基于TF-IDF的排名算法,以呈现用户最相关的结果。通过这两个增强功能,公平数据点可以响应用户的搜索请求,并具有更高的覆盖范围,并根据术语频率 - 逆文档频率(TF -IDF)指标提供更相关的结果。
摘要 - 基于基于网络的网络(IBN)管理已成为一种替代方法,可以通过抽象低级配置的复杂性来简化网络结构和管理。现有的IBN解决方案通常依赖于JSON或YAML等人类可读结构来定义意图,这仍然需要专业知识来理解这些结构。IBN的自然演变是使用自然语言而不是定义的结构。但是,这种方法引入了与自然语言理解有关的综合性。幸运的是,大型语言模型(LLMS)提供了有希望的解决方案。在本文中:(i)我们提出了一种新颖的以LLM为中心的意图生命周期(LC)管理体系结构,旨在使用自然语言配置和管理网络服务。架构涵盖了完整的意图LC,包括分解,翻译,谈判,激活和保证; (ii)我们在拟议的架构中确定与IBN相关的关键开放问题和挑战; (iii)我们通过在Eurecom 5G设施中开发一个组件[1]来证明档案馆的有效性[1],利用LLMS实施基本的意图LC程序; (iv)我们通过现实世界部署来验证提出的系统,展示其定义,分解,翻译和激活使用自然语言的意图的能力。
高速喷气式飞机的飞行员需要经过多年的高级训练才能获得出色的操控能力。如果能够将飞行员和其他领域专家的技能、知识和偏好提炼成一个能够捕捉真实操控行为的软件模型,那么这种方法将具有重大的实用价值。这种模型的可扩展性将使其可用于战略规划演习、培训以及其他软件系统的开发和测试。这将使人类驾驶专业知识这一稀缺资源获得更大的回报。这一愿景面临着实际挑战,即准确地获取所需知识以将其编入自动化系统。在许多需要直观决策和快速运动控制的情况下,专家一看到良好的操控性就知道,但并不总是能用形式或语言术语表达原因 [1]。∗ 显性知识获取策略也可能非常耗时,任何依赖专家演示的方法也是如此。这促使人们采用使用更稀疏数据源的基于学习的方法。鉴于透明度对于安全关键型航空应用的重要性 [ 2 , 3 ],任何此类方法都必须学习可解释(即人类可读和可理解)的专家知识模型,以促进信任和验证。本文提出了一个可能的解决方案。我们使用人工强化学习 (RL) 代理来生成 si 数据集
通过电子邮件发送您的申请,并在对象,简历和求职信中使用[实习]主题。Divin提交候选人资格的截止日期:2024年1月31日,对实习的描述(法语)摘要:人机互动是机器人的主要支柱之一,它仍然有很长的路要走,可以将机器人适应我们的日常生活环境。在人类填充的环境中工作的机器人应该能够感知和理解人类的行为,并使其运动在社会上更加合规。这意味着他们不仅应该保证周围的人的安全,而且还应显示可读的动作,以使人类更容易理解。的确,通过生成可读和有效的轨迹,我们可以优化服务效率和客户在动态和共享空间中的经验。作为Eurobin项目的一部分,我们正在社交导航堆栈中开发,以在餐厅类型的情况下向特定的人传递小物体,同时以温柔和可读性行事,以便目标人和其他环境的人可以理解机器人的意图。这需要通过赋予感知环境所需的传感器机器人的机器人,设计和开发一个能够捕获有关环境和在那里的人的必要信息的感知系统,并最终开发能够为机器人生成“可读性”运动的运动计划算法,同时适应环境中的变化。
具有可选自动驾驶仪功能的备用或主飞行仪表。G5 电子飞行仪表适用于实验性业余制造 (EAB) 和轻型运动飞机 (LSA)。紧凑且经济高效的 G5 提供出色的性能和可靠性,可用作 G3X™ 或其他 EFIS 系统的备用仪表,或作为独立的主飞行显示器,并具有可选的自动驾驶仪模式报警功能。G5 拥有明亮的 3.5 英寸阳光下可读液晶显示屏 (LCD),内置 GPS,可显示姿态、地面轨迹、高度、空速、地速、垂直速度、滑行/滑行、航向(横向)偏差、垂直偏差,并包含专用的 HSI 页面。与 G3X 玻璃飞行显示器集成时,可获得更多功能。此外,与兼容的自动驾驶仪模式控制器和自动驾驶仪伺服器配对时,G5 可作为功能强大的独立自动驾驶仪解决方案的一部分。无缝驾驶舱集成 G5 为 EAB/LSA 飞机拥有者提供了一种经济有效的途径,可以在驾驶舱中添加主飞行仪表或备用飞行仪表,该仪表将重要的飞行信息整合到一个易于阅读的显示屏上。G5 适合安装在标准 3-1/8 英寸(79.4 毫米)飞行仪表的位置,可轻松集成到 EAB/LSA 驾驶舱中。易于安装的 G5 飞行仪表在与备用电池配对时深度为 3 英寸,在没有电池的情况下深度为 2.1 英寸。