抽象阴离子交换膜(AEM)是燃料电池和水电解系统不可或缺的一部分,但在碱性条件下耐用性较差。醚裂解是基于聚(芳基醚)AEM的重要故障途径,它损害了机械稳定性和离子转运。虽然这种降解途径通常是通过聚合物碎片化来进行的,但新形成的水力组的作用在很大程度上被忽略了。我们表明,聚合物的分析导致机械刚度降低,而引入液体则部分减轻了这种损失。在碱性条件下,在醚裂解过程中形成的苯氧化物基团中和聚合物阳离子,导致以前未报告的离子兑换能力损失(IEC)。这种IEC损失机制加剧了离子连续性的降低,强调了以太裂解作为降解途径的严重程度。Recognizing that ether cleavage introduces significant chemi- cal changes beyond polymer fragmentation provides critical insights into its interplay with other degradation mechanisms, such as the direct reduction of cationic sites by E2 and S N 2 and provides molecular-level interpretations for the concurrent effects of polymer scission and in- creased hydrophilicity on membrane performance.
与对资金的投资相关的风险,包括波动性风险,数字资产价格风险,货币风险,政治,法律和监管风险,不变性风险和数字资产保管风险。只有在考虑您的特定情况,包括您对风险的容忍度,才应对资金进行投资。有关资金风险和其他功能的更多信息,请在www.betashares.com.au上查看相关的产品披露声明和目标市场确定。
这项工作探索了 (标准化) 后量子 (PQ) 数字签名算法在区块链环境中的应用和有效部署。具体而言,我们在以太坊虚拟机中实现并评估了四种 PQ 签名:W-OTS +、XMSS、SPHINCS + 和 MAYO。我们专注于优化验证算法的 gas 成本,因为这是签名方案在链上执行的唯一算法,从而给用户带来财务成本(交易费)。因此,验证算法是签名方案用于去中心化应用的主要瓶颈。我们研究了两种在链上验证后量子数字签名的方法。我们的实际性能评估表明,完整的链上验证通常成本高昂。Naysayer 证明 (FC'24) 允许一种新颖的乐观验证模式。我们观察到 Naysayer 验证模式通常是最便宜的,但代价是额外的信任假设。我们将我们的实现 poqeth 作为开源库发布。
机械工程系 - 印度泰米尔纳德邦哥印拜陀库马拉古鲁技术学院摘要:全球对可持续运输的关注已导致出现了改造现有的常规自行车,以作为从传统燃烧发动机车辆过渡到环境友好的替代方案的实用策略。这项研究深入研究了旨在增强传统自行车的性能,效率和环境影响的概念化,设计和实施。在技术进步,创新和发展时代,电动流动趋势引起了所有行业的关注。电动汽车有望彻底改变汽车行业。著名的行业优先考虑电气化而不是常规推进方法。在不久的将来,IC车辆预计将被电动对应物黯然失色。该项目旨在通过为现有车辆提供具有成本效益且环保的替代品来解决公共交通问题。所提出的设计涉及用纯电源源代替整个传动系统,需要对OEM自行车进行修改。该项目具有成本效益,轻巧的结构,互换性和完整的生态友好性,大大降低了可能导致事故或死亡的危险物质的使用。此外,该研究还考虑了改装自行车的生命周期分析及其对减少温室气体排放的潜在贡献,研究了改造的环境益处。关键字:改装,IC发动机,电动汽车,电池。
摘要 - 区块链技术破坏包括农业在内的多个行业的潜力在近期引起了人们的重大兴趣。使用以太坊的功能,一个分散的平台,可以开发出DAPP(分散应用),以实现农业链的可追溯性,效率和透明度。我们DAPP的核心组成部分是智能合约。自我执行的智能合约包含嵌入其代码中的明确合同要求。这些合同保存在以太坊网络上,并在满足特定条件的满意下自动生效。通过使用智能合约,非洲供应链DAPP可以自动化和简化许多任务,包括质量控制,付款和解和物流跟踪。索引条款 - 以太坊,DAPP,智能合约,供应链。
近年来,区块链技术已成为安全和分散数据管理的革命性技术,这主要归功于它能够提供不可篡改、透明且无法操纵的数据账本。该技术已被应用于各个领域,其中金融是主要应用场景,但也扩展到供应链管理等许多领域。然而,量子计算机的出现对区块链技术的基础构成了重大威胁,因为它们可能会破坏当前加密算法的安全性。利用量子力学原理,量子计算机可以同时执行大量计算,因为它们的基本信息表示单位量子比特可以存在于多种状态的叠加中。这允许同时表示多个状态,极大地促进了高效的并行处理 [1]。因此,量子计算机能够比传统计算机更快地解决复杂的数学问题。特定算法的应用显著增强了量子计算的潜力,比如用于分解大数的Shor算法[2]和用于加速非结构化数据搜索的Grover算法[18]。
ERC 代表以太坊征求意见。它们是以太坊区块链上某项功能的官方规范和实施细节。每个 ERC 都以以太坊改进提案 (EIP) 开始,在进入官方 ERC 之前,需要进行讨论和同行评审。该数字代表提案的唯一标识号。
摘要:形成稳定的电化学相互作用,包括固体电解质间相(SEI)和阴极电解质相间(CEI)对于开发高性能碱金属电池至关重要。SEI/CEI的稳定性主要取决于其化学和结构。当前对SEI/CEI设计的研究主要集中于通过调节电解质配方来调节其化学。在这项工作中,我们展示了SEI/CEI的化学和结构都可以通过温度调制的形成策略轻松调节。具体而言,使用加热条件下的预充电来调节电解质分解反应的类型和动力学,然后在低温存储下冷冻,以控制电极界面上分解产物的沉积行为。研究表明,高温预充电会影响LI+的配位结构并加速分解反应动力学,从而导致大量阴离子分解。随后的低温存储迅速降低了在高温下产生的分解产物的溶解度,从而促进了两个电极对不溶性产物的沉积,从而导致密集且稳定的SEI/CEI。强大的SEI/CEI实现了中等浓度的基于以太电解质的4.5 V LI || NCM811单元的稳定循环,
所提出的系统使用以太坊作为后端区块链操作系统,并将以太坊的专有编程语言坚固性用作编写智能合约的高级编程语言。坚固性支持继承,库导入等。坚固性是为以太坊虚拟机(EVM)设计的。与比特币的脚本不同,坚固性提供了循环,并且已经完成了。在系统上,公共智能合约基于以太坊的区块链。在该项目中,为了易于测试,我们使用Geth建立了私人连锁店并将智能合同推向这款私人连锁店,以便私人连锁店模拟公共连锁店的状况。我们使用MetAmask进行帐户余额和合同信息管理。用户看到的用户界面是网页。网页的服务器端是使用http-server套件制成的,该套件由node.js和web3.js提供为智能合约和用户界面之间的链接。设置服务器后可以连接私人链和地址信息。
摘要 - 随着电子市场的交易开始逐渐上升,世界正在看到数字货币(例如比特币,以太坊和其他人)的金融交换的明显增加,这增加了在使用分布式数据库以及与以太坊网络相互作用的技术相互作用的技术中保持安全性和信任的难度本研究介绍了基于Pycaret库的混合模型,其中包括12个机器学习分类器,目的是确定比特币交易中的欺诈活动并增强以太坊网络和区块链技术的安全性。结果揭示了不同模型通过全面的绩效比较来识别以太坊网络上欺诈活动的有效性。显示出最高精度得分的分类器,范围从0.9814到0.9862,是随机森林分类器,视觉梯度提升机和添加剂树分类器。重要的是要注意,梯度增强分类器和K邻居分类器的表现都很好,精度高于0.96,AUC得分高于0.99。