van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
USask 的临时人工智能 (AI) 原则和指南 i USask 的 AI 原则旨在确保以支持 USask 的使命、愿景、价值观和战略目标的方式合乎道德、有效和负责任地使用 AI,并维护所有利益相关者的信任和信心。这些原则和指南旨在指导我们提供、支持和使用 AI 工具开展研究、教学、管理和支持服务。重要的是,当 AI 成为研究或教学的主题时(例如,关于 AI 的研究或教学),其中一些原则和指南可能不适用。这些活动被视为通过其他大学政策和实践以及学术自由的权利和义务进行管理。USask 坚持包括合议和包容性 ii 在内的核心价值观。重要的是,我们的流程包括研究人工智能 (AI) 使用教育特定原则的有影响力的例子,包括《北京人工智能与教育共识》 iii 和世界经济论坛的《教育人工智能七项原则》 iv 。这些框架要么以联合国教科文组织的《人本主义人工智能十大核心原则》为基础,要么以此为参考。以这些国际范例为参考点,萨斯喀彻温大学人工智能原则是通过一个强大而反复的过程制定的,该过程涉及来自我们校园各地的社区成员。萨斯喀彻温大学的人工智能原则和实践对于萨斯喀彻温大学的人工智能使用具有包容性、响应性和有效性。我们将继续采取持续响应的方式,以不断发展的人工智能原则和指导方针——考虑大学社区的反馈和人工智能技术的进步——以确保人工智能的使用保持有效、相关,并与我们大学不断变化的需求和价值观保持一致。随着萨斯喀彻温大学社区成员得到支持,将他们的人工智能实践与这些原则和指导方针保持一致,将培养一种负责任和道德的人工智能文化。萨斯喀彻温大学将接受我们作为人工智能使用方面的批评者和社会良知的角色,将公开其人工智能使用的原则和指导方针,并随着原则和指导方针的不断发展及时提供更新。重要的是,这些原则代表了我们在快速变化的环境中使用人工智能的愿望。道德和负责任的使用 1. 负责任。人类有意的选择和行动引领着我们对人工智能的使用,而人工智能
课程大纲中关于使用生成人工智能 (AI) 的声明示例(见参议院章程 54 和 55) 生成人工智能是一种通过识别大量训练数据中的模式来创建类似人类内容(包括文本、图像、视频和计算机代码)的技术,然后创建具有相似特征的原始材料。示例包括:可以生成文本的 ChatGPT、Google Gemini、Claude 和 Jenni,可以生成编码和编程的 Github Co-pilot,以及可以生成图像的 DALL-E 和 Midjourney。(Pasick,2023 年)参议院章程 54 和 55 要求教师在课程大纲中包含“有关在课程中使用生成人工智能 (AI) 的信息或限制”。不将信息包含在课程大纲中的默认情况是允许在课程中使用生成人工智能(参议院:2024 年 5 月 10 日)。教学大纲说明样本:[非详尽列表] 禁止使用示例 1:在本课程中,使用任何生成式 AI 系统(包括但不限于 ChatGPT、Claude、Jenni、Github Co-pilot、DaLL-E 和 Midjourney)均被视为可能带来不应有优势的未经授权的辅助工具,因此不得在提交的成绩作业创作中或作为本课程任何作业的一部分使用。在本课程的评分作业中使用生成式 AI 系统被视为学术不端行为,可能根据章程 31:学术诚信受到纪律处分。示例 2:在本课程中,生成式 AI 工具(例如 ChatGPT、Google Gemini、Claude、Jenni、Github Co-pilot、DaLL-E 和 Midjourney)被视为未经授权的辅助工具。在本课程的任何作业(例如写作过程、创作过程、图像创建过程)的任何阶段均不允许使用生成式 AI。以此方式使用将被视为学术不端行为,并可能根据章程 31:学术诚信受到纪律处分。示例 3:本课程不允许使用生成式 AI 工具(例如 ChatGPT、Google Gemini、Claude、Jenni、Github Co-pilot、DaLL-E 和 Midjourney 等);因此,在本课程中使用任何 AI 工具进行作业都将被视为违反大学的学生行为准则,因为该作业并不完全是你自己的,并可能根据章程 31:学术诚信受到纪律处分。示例 4:除非讲师明确说明,否则本课程的所有作业均严禁使用生成式人工智能工具。这包括 ChatGPT、Google Gemini、Claude、Jenni、Github Co-pilot、DaLL-E 和 Midjourney 以及其他人工智能工具。使用未经授权的辅助工具构成学术不端行为,可能受到《条例 31:学术诚信》的处罚。一些允许的用途示例 1:学生可以根据每次评估概述的指导方针在本课程中使用生成式人工智能,只要承认并引用了生成式人工智能的使用,并遵循课程大纲和/或作业说明中给出的引用说明即可。这包括 ChatGPT、Google Gemini、Claude、Jenni、Github Co-pilot、DaLL-E 和
近年来,增强学习(RL)已成为一种有力的工具,可在光网络(例如路由和波长分配(RWA)[1]等光网络中解决复杂而染色的优化问题[1],路由,调制和频谱分配(RMSA)[2]以及虚拟网络嵌入[3]。RL实现的性能效果表明其在现实世界中的应用潜力。但是,与其他机器学习(ML)算法类似,RL模型具有黑盒性质,使它们难以解释。这种特征使RL模型难以信任,因此在实际的光网部署中采用。对于监督的ML模型,Shap(Shapley添加说明)[4]是一种可解释的AI方法,已被广泛采用。Shap是一种基于合作游戏理论的方法,用于量化单个特征对模型决策过程的影响。Shap值提供了对每个功能的相对重要性(影响)的见解,从而估算了它们如何对模型的输出做出贡献。将这种解释性框架应用于传播质量(QOT)预测任务时,已显示出有希望的属性[5]。最近,由于需要解释和使RL模型的决策过程透明的驱动,可解释的RL(XRL)受到了越来越多的关注。在光网络的上下文中,XRL的概念仍然相对尚未探索。先前建议通过反向工程网络状态[6]或网络中资源使用分析(链接)来解释和解释RL模型的决策[1,7]。但是,这些研究并未分析不同特征如何影响RL药物的决策。因此,在光网络背景下,RL代理学到的政策仍然存在一段差距。这至关重要,因为网络运营商需要在其在实际网络中部署之前了解RL学习策略背后的推理。在这项工作中,我们旨在利用Shap(Shapley添加说明)[4]来解释应用于RMSA问题的RL模型的行为。为此,我们提出了一种使用训练有素的RL代理的观察和行动来以有监督的学习方式训练ML模型的方法。由Shap使用所得的ML模型来提取解释。与[2]中的RMSA问题的每个组件分别求解,RL代理解决路由问题,基于路径长度的调制格式选择以及基于第一拟合策略的频谱分配。我们分析了该问题的三种变化,改变了奖励函数和选择RL代理的不可行的动作的可能性。我们特别有兴趣解释重要的网络和LightPath请求特征,该特征导致RL模型拒绝该请求。结果允许我们确定哪些功能和哪些值范围影响RL代理接受或拒绝LightPath请求。我们观察到,通过更改奖励功能,RL策略会更改拒绝请求时所考虑的重要功能。引入了防止RL模型采取不可行的措施的掩码,使功能的重要性更加均匀地分布在不同的路由选项上。我们认为,提出的方法对于增加将在真实网络中部署的RL模型的可信度可能是有价值的。
b'We考虑了确定有向图中的根和全局边缘和顶点连接性(以及计算相应切割)的基本问题。对于具有小整数功能的根(以及全局)边缘连接,我们给出了一种新的随机蒙特卡洛算法,该算法在时间\ xcb \ x9c o n 2中运行。对于根边连接性,这是第一个在密度高图高连续性方向上绑定的\ xe2 \ x84 \ xa6(n 3)时间上改进的算法。我们的结果依赖于采样的简单组合以及显得新颖的稀疏性,并且可能导致有向图连接问题的进一步权衡。我们将边缘连接想法扩展到有向图中的根和全局顶点连接。我们获得了\ xcb \ x9c o(nw/\ xcf \ xb5)中的根顶点连接的(1 + \ xcf \ xb5) - approximation,其中w是w是总顶点的重量的时间(假设Integral verterx werges flovex wevertex weivers apteral vertex weivers witteral wittex weivers w we特别地,这会产生一个\ xcb \ x9c o n 2 /\ xcf \ xb5时间随机算法的未加权图。这转化为\ xcb \ x9c o(\ xce \ xbanw)时间精确算法,其中\ xce \ xba是根的连接。我们以此为基础为全局顶点连接获得类似的范围。我们的结果补充了由于Gabow的工作[8]的1991年边缘连接性工作以及Nanongkai等人的最新工作,因此在低连通性方面的这些问题的已知结果。[23]和Forster等。[6]用于顶点连接。
第 9 章 巴甫洛夫、斯金纳和其他行为主义者对人工智能的贡献 *** Witold Kosinski 和 Dominika Zaczek-Chrzanowska 波兰-日本信息技术研究所,波兰-日本计算机技术研究中心 ul. Koszykowa 86, 02-008 Warszawa wkos@pjwstk.edu.pl mado@pjwstk.edu.pl 摘要 将在真实和人工系统的背景下提供一种智能行为的定义。将简要介绍学习原理,从巴甫洛夫的经典条件作用开始,到桑代克和斯金纳的强化反应和操作性条件作用,最后到托尔曼和班杜拉的认知学习。本文将描述行为主义中最重要的人物,尤其是那些对人工智能做出贡献的人物。本文将介绍一些根据这些原理行事的人工智能工具。本文将尝试说明何时一些简单的行为修改规则可以导致复杂的智能行为。 1. 智能:描述 毫无疑问,行为主义者对人工智能的发展做出了巨大贡献。动物学习理论的证据,尤其是行为主义者发现的学习规律,多年来吸引了人工智能领域的研究人员,许多模型都以此为基础。智能是一个复杂而有争议的概念,因此很难用一个简单的定义来概括它。根据 Jordan 和 Jordan [1] 的说法,将智能视为我们用来描述具有一定质量的行为的概念是恰当的。在这方面应该使用两个标准,即速度(即代理执行需要智力的特定任务的速度)和能力(即代理可以执行的任务的难度)。另一方面,我们可以找到另一种智能定义,即执行认知过程的能力。有三个基本的认知过程:1) 抽象,2) 学习,3) 处理新颖性。该领域的杰出研究人员对智力给出了许多定义,例如,它被定义为: