摘要 重力引起的意识丧失 (G-LOC) 是战斗机飞行员面临的主要威胁,可能会导致致命事故。高 +Gz(头到脚方向)加速度力会诱发脑出血,导致周边视力丧失、中央视力丧失(昏厥)和 G-LOC。我们尝试建立一个公式,使用脑氧合血红蛋白 (oxyHb) 值、身高、体重和身体质量指数 (BMI) 来预测 G-LOC。我们分析了 2008 年至 2012 年间测量的 249 名人体离心机受训者的脑氧合血红蛋白值。受训者暴露于两种离心机模式。一种是 4G–15s、5G–10s、6G–8s 和 7G–8s,不穿抗荷服(间隔 60 秒,发作率为 1G/s)。另一组为 8G-15s,起始速率为 6G/s,穿着抗荷服。我们使用近红外光谱仪 (NIRS)(NIRO-150G,日本静冈县滨松光子学株式会社,滨松)测量了受训者的脑氧合血红蛋白值。分析了以下参数。A)基线值为 +Gz 暴露前 30 秒的平均值。B)+Gz 暴露期间氧合血红蛋白的最大值。C)+Gz 暴露期间氧合血红蛋白的最小值。D)氧合血红蛋白从最大值到最小值的变化率(变化率)。使用逻辑回归分析进行统计分析,以建立预测 G-LOC 的公式。受训者的年龄为 24.1 ±1.7(S.D.)(范围,22 ~ 30)
图1多个系统萎缩的治疗方法这种形状说明了针对多系统萎缩(MSA)病理机制的各种治疗策略。MSA的特征是神经元丧失,神经胶质病和α-突触核蛋白夹杂物的积累。抗 - α突触核蛋白疗法包括 - 在诸如ANELE138B,清除剂,例如PD01A,PD03A,LU AF82422,TAK - 341和UB – 312和UB –312和UB –312和抑制方法之类的清除剂中的聚集。细胞疗法涉及修复和再生受损神经组织的间充质干细胞。能量代谢和INSU -LIN信号 - 靶向疗法包括脱齿素 - 4,泛氨醇和NAD +补充。抗炎性和神经保护疗法具有氟西汀,AAV2 - GDNF和KM819的化合物,可减少炎症并提供神经保护作用。细胞调节文本包括显示退化的神经元,α-突触核蛋白夹杂物,活化的星形胶质细胞和小胶质细胞,免疫 - 反应性T细胞,IM成对的线粒体,Pro - 炎性细胞因子,肌蛋白损失和髓质细胞质细胞胞质包含(GCIS)(GCIS)。此视觉代表提供了MSA中治疗策略及其细胞靶标的概述。
I II III 因素 1 (H1):不信任他人的自我中心主义 (α=.79) 12. 人们可能会说好话,但最终他们最关心的是自己的幸福。 5.03 (1.12) .65 -.05 .00 16. 人们更有可能维护自己的权利,而不是承认他人的权利。 4.70 (1.06) .64 -.04 .00 2. 人们会做一些轻微的错事来获得自己的利益。 4.48 (1.11) .60 .08 .09 17. 人们撒谎是为了避免麻烦。 4.61 (1.08) .60 .01 .07 6. 人们撒谎是为了出人头地。 4.35 (1.21) .54 .13 .16因素 2 (H2):相信人们的诚实 (α=.70) 5. 人们通常过着诚实正直的生活 4.16 (1.17) -.11 -.70 .14 8. 人们通常诚实地与他人打交道 4.55 (1.03) .13 -.65 -.15 1. 人们基本上是诚实的 4.36 (1.19) .08 -.61 -.15 14. 人们说到做到 4.00 (1.08) -.11 -.50 .16 因素 3 (H3):不相信人们的谨慎 (α=.67) 4. 人们怀疑别人对自己很友善,因此很谨慎 3.90 (1.09) .05 -.07 .64 10. 人们认为不信任他人更安全4.03 (1.14) .13 .03 .54 13. 人们内心不愿意帮助别人 3.53 (1.10) .00 .11 .53 9. 人们很谨慎,因为他们认为有人会利用他们 4.38 (1.08) .20 -.15 .43 最大似然法,Promax 旋转 特征值 3.93 1.90 1.16 贡献率 30.3% 14.6% 8.9% 累积贡献率 30.3% 44.8% 53.7% 因子间相关性 I - 0.25 0.55 II - - 0.31
2凸式23 2.1基础:压缩感应。。。。。。。。。。。。。。。。。。25 2.1.1凸介:原理。。。。。。。。。。。。。。。。25 2.1.2直觉。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.1.3在有限的等轴测图下保证紧密度。。。。。29 2.2低级矩阵恢复。。。。。。。。。。。。。。。。。。。。30 2.2.1凸质:原理。。。。。。。。。。。。。。。。。。。。31 2.2.2在受限的等轴测图下保证紧密度。33 2.2.3没有限制等轴测的问题。。。。。。。。。。35 2.3超分辨率。。。。。。。。。。。。。。。。。。。。。。。。。。40 2.3.1通过总变化规范进行凸介。 。 。 40 2.3.2无限制的等轴测特性。 。 。 。 。 。 。 。 。 。 。 。 。 43 2.3.3通过双证书正确性。 。 。 。 。 。 。 。 。 。 。 。 。 4440 2.3.1通过总变化规范进行凸介。。。40 2.3.2无限制的等轴测特性。。。。。。。。。。。。。43 2.3.3通过双证书正确性。。。。。。。。。。。。。44
逆增强学习(IRL)由于其有效性从专家的演示中恢复奖励功能的有效性,因此一直在接受大量的研究工作,这些奖励功能可以很好地解释专家的行为。在实际应用中,约束无处不在,与一组约束相比,奖励功能比单个奖励功能更好地解释了复杂的行为(Malik等,2021)。因此,提出了逆约束强化学习(ICRL)以从专家的示范中学习限制。IRL上的最新目前(Fu等,2018; Imani&Ghoreishi,2021)和ICRL(Scobee&Sastry,2019年)可以在不受约束的环境中学习奖励功能,或者可以推断出与获得地面真相奖励但不能推断出两者的约束。为了解决这一挑战,提出了分布式ICRL(Liu&Zhu,2022)来学习专家的奖励功能和约束。在本文中,我们遵循(Liu&Zhu,2022)中的ICRL的定义,这意味着学习专家的奖励功能和约束。
Schmidt Sciences AI2050 Early Career Fellow 2024 City & State Trailblazer in Higher Education 2024 Samsung AI Researcher of the Year (awarded to 5 early-career faculty worldwide) 2023 NSF CAREER Award 2022 Cornell Tech Faculty Teaching Award of the Year (awarded to one faculty member by students) 2022 CIFAR Azrieli Global Scholar 2022 Kavli Fellow 2022 LinkedIn Faculty Research Award 2022 MIT Technology Review 35 Innovators Under 35 2021 Best Paper Award in Applied Data Science Track, KDD 2021 Google Research Scholar 2021 Best On Theme paper award, NeurIPS ML4H Workshop 2020 Forbes 30 Under 30 in Science 2019 Most impactful to society poster award, University of Michigan AI Symposium 2019 EECS Rising Star 2018 Best paper award, AISTATS 2018 Top 10 2016-2017论文监管和系统基因组学(ROCOMB/ISCB)2017 2017年最佳海报奖,ICML计算生物学2016年最佳脱口秀奖,ISMB高吞吐量Sig 2015 Rhodes 2015 Rhodes Secorning 2015 Rhodes Scholar 2014 Hertz Hertz Hertz Hertz 2014 NDSEG Allt 2014 NDSEG ALLIG 2014 NDSEG ALLID 2014 DEANS奖学金,2014年DEANS COUMPL ANTANFORD COMPAL,NINTAN FAME 2013 NINATAR DRIVATE 2013 US,US DIMATICS US,US DIMATICS US,US dnd <