灵活的环境空气监测 nCLD AL 是环境空气监测的理想仪器,可安装在机架、固定监测站或移动实验室中。除了开放环境中的环境空气外,该分析仪还适用于生产工厂和办公室的空气质量监测(TLV = 阈值限值)。nCLD AL 是基于模块化原理的单通道 NO X 检测器。测量范围可单独调整,参数为 NO、NO 2 和 NO X,仪器入口在环境压力下运行。设备校准快速自动运行,同时所有必要数据均连续存储并可随时随地轻松获取。
(1)Sengupta N. et al ., (https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets%2FBPD%2Fposters%2Fchemically-defined-medium-e- coli-poster.pdf, 阅覧日: 2022 年2 月), (2)Vieira et al ., J. Food Compost. Anal ., 52, 44-51(2016)
主题代码:CYO-103课程标题:仪器分析方法介绍L-T-P:2-1-0学分:3主题领域:OEC课程大纲:错误分析和采样。原子吸收和发射光谱技术。使用UV-可见,红外和NMR光谱技术和质谱法的结构分析。色谱分析:GC,LC,HPLC和连字符技术。电分析技术:电位计和伏安法。热分析:TGA,DTG和DSC。X射线衍射研究和微观技术。
摘要:化学计量技术,例如部分最小二乘(PLS)回归,已应用于各种化学问题,包括复杂混合物中分析物的多组分分析。尽管如此,很少有实验室教学练习的例子涉及学生从基于红外光谱的仪器中获取化学数据,然后使用PLS进行定量化学计量分析。在本文中,我们提出了一项计算活动,该计算活动在仪器分析实验室环境中介绍了本科生,使用衰减的总反射率 - 较较高的转换红外(ATR-FTIR)光谱谱图进行数据获取,然后使用PLS进行数据分析。活动的第一部分涉及学生创建由p- cymene和limonene组成的二元萜烯组件的混合设计。然后使用ATR-FTIR光谱仪分析了这些混合物,在那里学生熟悉了该仪器,并显示了如何使用其生成的FTIR光谱来表征和区分上述萜烯。活动的第二部分涉及从第一部分中获得获得的FTIR光谱数据的预处理,然后同时使用PLS确定准备好的萜烯。根据学生的调查,可以得出结论,这项方便且廉价的活动最终成功地介绍了使用ATR-FTIR的化学计量学用于对萜烯进行定量分析。关键字:上限本科,分析化学,基于计算机的学习,化学计量学,红外光谱,光谱■简介这项易于做的两周活动可以用作仪器分析实验室类别的独立活动,甚至可以集成在应用光谱和化学计量学的高级课程中。
抽象的聚合物纳米复合材料已被广泛用作吸附剂,以在最终的仪器分析之前从环境水中提取污染物。这些材料具有高度的用途,可以通过充分选择聚合物/纳米材料组合来适应给定的分析问题。通过在实验室和可以获得它们的不同格式(颗粒,膜,整体或纤维)中的不同格式(颗粒,膜,整体或纤维)来增强材料的适应性。本文提供了一般概述聚合物纳米复合材料的潜力,强调了实际方面(合成和微挖掘技术)。它旨在通过在样本制备中显示这些材料几乎无尽的可能性以及在不久的将来的主要趋势来激发研究人员。
以前,已经使用专用仪器分析了频率响应,但是新一代示波器现在可以测量电源的控制环响应。该分析称为Hendrick Wade Bode之后的Bode(Bode)图。 传统上,该分析使用FFT算法来测量在特定频率范围内系统的增益和相位。诸如4/5/6系列MSO之类的较新示波器具有所有通道上专用的数字下调器,它们独立于时域样本率和记录长度设置。通过称其为频谱视图,该功能与传统的FFT区别开来,在频率响应分析中提供了出色的结果。这份白皮书使用传统的FFT和频谱视图来比较两个不同DUTS(测量设备)的bode图(控制环响应)。
a 马德里自治大学 (UAM) 分析化学与仪器分析系,28049,马德里,西班牙 b 微纳米技术研究所 IMN-CNM,CSIC (CEI UAM + CSIC),28760,Tres Cantos,马德里,西班牙 c 马德里自治大学无机化学系和凝聚态物理中心 (IFIMAC),28049,马德里,西班牙 d 马德里自治大学化学科学高级研究所 (IAdChem),28049,马德里,西班牙 e IMDEA-Nanociencia,Ciudad Universitaria de Cantoblanco,28049,马德里,西班牙 f 拉蒙·卡哈尔大学医院微生物学服务中心和拉蒙·卡哈尔健康研究所 (IRYCIS),28034,西班牙马德里 g 西班牙马德里卡洛斯三世卫生研究所传染病网络生物医学研究中心 (CIBERINFEC) h 西班牙马德里流行病学和公共卫生网络生物医学研究中心 (CIBERESP)
摘要:提出并评估了一种超低水平光检测模块——时间相关光子计数器,用于荧光分析。时间相关光子计数器采用硅光电倍增管作为光子计数传感器,结合泊松统计算法和双时间窗技术,可以准确计数光子数。时间相关光子计数器与时间相关单光子计数技术兼容,可以记录非常微弱的光信号的到达时间。利用这种低成本、紧凑的仪器分析了异硫氰酸荧光素的强度和寿命,获得了16 pg/ml的检测限,线性动态范围从2.86 pg/ml到0.5 µ g/ml,测得异硫氰酸荧光素的寿命为3.758 ns,与先进的商用荧光分析仪的结果一致。时间相关的光子计数器可能在即时诊断等应用中很有用。