摘要:山上在水资源可用性中起着极大的作用,并且它们提供的水的数量和时机在很大程度上取决于温度。为此,我们提出了一个问题:大气模型捕捉山温度的程度如何?我们合成结果表明,高分辨率,与区域相关的气候模型产生的空气温度(T2M)测量比观察到的(一种“冷偏置”)更冷,尤其是在冬季雪覆盖的中纬度山脉中。我们在全球山脉的44项研究中发现了常见的冷偏见,包括单模型和多模型合奏。我们探讨了推动这些偏见的因素,并检查了T2M背后的物理机制,数据限制和观察性不确定性。我们的分析表明,偏见是真实的,不是由于观察到的稀疏性或分辨率不匹配。冷偏置主要发生在山峰和山脊上,而山谷通常是温暖的偏见。我们的文献综述表明,增加模型分辨率并不能清楚地减轻偏见。通过分析科罗拉多洛矶山脉中的地表大气中的数据集成现场实验室(SAIL)现场活动,我们测试了与冷偏见有关的各种假设,发现当地的风回流,长波(LW)辐射和地表层参数有助于在此特定位置的T2M偏见。我们通过强调在仪器高的山区位置的协调模型评估和开发工作的价值来解决,以解决T2M偏见的根本原因,并提高对山气候的预测性理解。
摘要:山上在水资源可用性中起着极大的作用,并且它们提供的水的数量和时机在很大程度上取决于温度。为此,我们提出了一个问题:大气模型捕捉山温度的程度如何?我们合成结果表明,高分辨率,与区域相关的气候模型产生的空气温度(T2M)测量比观察到的(一种“冷偏置”)更冷,尤其是在冬季雪覆盖的中纬度山脉中。我们在全球山脉的44项研究中发现了常见的冷偏见,包括单模型和多模型合奏。我们探讨了推动这些偏见的因素,并检查了T2M背后的物理机制,数据限制和观察性不确定性。我们的分析表明,偏见是真实的,不是由于观察到的稀疏性或分辨率不匹配。冷偏置主要发生在山峰和山脊上,而山谷通常是温暖的偏见。我们的文献综述表明,增加模型分辨率并不能清楚地减轻偏见。通过分析科罗拉多洛矶山脉中的地表大气中的数据集成现场实验室(SAIL)现场活动,我们测试了与冷偏见有关的各种假设,发现当地的风回流,长波(LW)辐射和地表层参数有助于在此特定位置的T2M偏见。我们通过强调在仪器高的山区位置的协调模型评估和开发工作的价值来解决,以解决T2M偏见的根本原因,并提高对山气候的预测性理解。
摘要:山上在水资源可用性中起着极大的作用,并且它们提供的水的数量和时机在很大程度上取决于温度。为此,我们提出了一个问题:大气模型捕捉山温度的程度如何?我们合成结果表明,高分辨率,与区域相关的气候模型产生的空气温度(T2M)测量比观察到的(一种“冷偏置”)更冷,尤其是在冬季雪覆盖的中纬度山脉中。我们在全球山脉的44项研究中发现了常见的冷偏见,包括单模型和多模型合奏。我们探讨了推动这些偏见的因素,并检查了T2M背后的物理机制,数据限制和观察性不确定性。我们的分析表明,偏见是真实的,不是由于观察到的稀疏性或分辨率不匹配。冷偏置主要发生在山峰和山脊上,而山谷通常是温暖的偏见。我们的文献综述表明,增加模型分辨率并不能清楚地减轻偏见。通过分析科罗拉多洛矶山脉中的地表大气中的数据集成现场实验室(SAIL)现场活动,我们测试了与冷偏见有关的各种假设,发现当地的风回流,长波(LW)辐射和地表层参数有助于在此特定位置的T2M偏见。我们通过强调在仪器高的山区位置的协调模型评估和开发工作的价值来解决,以解决T2M偏见的根本原因,并提高对山气候的预测性理解。