• 自安装以来,R-45 筛网 2 中的铬浓度一直在增加 • NMED 认为,附近的注入井的使用可能导致污染物更深地进入东部地区的区域含水层 • 2023 年 3 月 30 日,IM 运营关闭,以遵守 NMED 的指示,在 2023 年 4 月 1 日前停止注入
去除相关成分。在分析处理技术时,州水务委员会将评估全面处理技术、新兴技术以及市售技术的性能。通过此分析,可将某种处理工艺确定为《水法》第 116370 节定义的最佳可用技术 (BAT)。在 CrVI MCL 开发的最新版本中,确定了三种 BAT:离子交换、反渗透和还原铬物种过滤。每种技术均可可靠地将 CrVI 处理至低于 0.010 mg/L(之前的 MCL)。2 本质上,BAT 指定确定了技术可行性的下限。任何 MCL 都不应设置得比处理技术可实现的技术水平更严格。
海军环境可持续发展一体化 (NESDI) 计划是美国海军的环境研究和开发示范和验证计划,由 OPNAV N4I 设施部门赞助,由位于加利福尼亚州波特休尼米的工程和远征作战中心的海军设施工程系统司令部管理。该计划的使命是通过演示、验证和集成创新技术、流程和材料以及填补知识空白来提供解决方案,以最大限度地降低运营环境风险、限制和成本,同时确保海军的战备和杀伤力。
ADAF age-dependent adjustment factors ADME absorption, distribution, metabolism, and excretion AIC Akaike's information criterion ALT alanine aminotransferase ALP alkaline phosphatase Asc ascorbate AST aspartate aminotransferase ATSDR Agency for Toxic Substances and Disease Registry BAL bronchoalveolar lavage BALF bronchoalveolar lavage fluid BMD benchmark dose BMDL benchmark dose lower confidence limit BMDS Benchmark Dose Software BMI body mass index BMR benchmark response BMDC bone marrow-derived stem cell BW body weight CA chromosomal aberration CASRN Chemical Abstracts Service Registry Number CHO Chinese hamster ovary (cell line cells) CPHEA Center for Public Health and Environmental Assessment CL confidence limit CNS central nervous system Cr(III)三价铬Cr(IV)四价铬Cr(V)载体CR(VI)六价铬铬DAF daf剂量调节因子DLCO碳一氧化碳DNA DNA脱氧核糖核酸氧化脱氧核糖核酸酸E EPA EPA EPA EPA EPA EPA EPA ISPAIRE EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA EPA FEF 1 FEF 1 FEL. FVC强迫生命能力GD妊娠日GGTγ-谷氨酸转移酶GI胃肠道GLP良好实验室实践GSD几何标准标准偏差GSH谷胱甘肽GST谷胱甘肽GST谷胱甘肽-S-转移酶-S-转移酶HAWC健康评估工作区HEC HEC HEC HEC HEC HEC HEAC HEAC HEAC HEAC HEAC HEAC HEAC HEAC HEAC HEAC HEAC HEAC HEAC HEAC HEAC HEAC HEC VICERENT
金属微量元素(MTE)是天然水域中最有害的微污染物之一。消除它们有助于提高饮用水的质量和安全性并保护人类健康。在这项工作中,我们使用芒果kernel粉(MKP)作为生物添加物材料,以从Water中去除CR(VI)。UV可见光谱法监测和量化Cr(VI)。优化了一些参数,例如pH,芒果粉,质量和接触时间,以确定吸附能力和去除率。吸附动力学,平衡,等温线和热力学参数,例如ΔgL,ΔH˚和ΔS˚以及FTIR,以及通过MKP更好地了解CR(VI)的去除过程。达到94.87 mg/g的吸附能力,在298 K时为30分钟的最佳接触时间。获得的结果符合PSEU-DO-DO-DOSEC-FRENDLICH FREUNDLICH吸附等温线模型。最终使用FTIR监测吸收带的演变,而扫描电子显微镜(SEM)和能量色散X射线光谱(EDS)用于评估吸附剂的表面特性和形态。
1位环境和遗传毒理学实验室,路易斯维尔大学药理学与毒理学系,500 S Preston ST,RM 1422,RM 1422,美国肯塔基州路易斯维尔1位环境和遗传毒理学实验室,路易斯维尔大学药理学与毒理学系,500 S Preston ST,RM 1422,RM 1422,美国肯塔基州路易斯维尔
• 镉会在人体内积累,特别是肾脏(3) • 它可以通过呼吸或饮食进入您的系统。 • 这在 Lee County 很重要,因为我们焚烧垃圾,这会导致镉释放到空气中并沉淀在水中。汞是一种存在于电子垃圾中的重金属。 • 据估计,垃圾填埋场中 70% 的重金属(包括汞和镉)来自电子垃圾(3)。 • 计算机交换机和平板屏幕中都含有汞 • 汞会通过食物链积累,尤其是在鱼类中。 • 它会损害大脑功能。 • 1997 年至 2004 年间淘汰的 3.15 亿台计算机 400,000 磅汞(3)六价铬(六价铬)仍被一些制造商用作未经处理钢的防腐剂。 • 六价铬很容易通过细胞膜进入系统。它会导致 DNA 损伤。 • 哮喘性支气管炎是一种与六价铬有关的过敏反应。 • 1997-2004 年间淘汰的 3.15 亿台电脑中,约有 120 万磅六价铬 (3)。 污染防治 - 你能做些什么来帮助减少污染 • 尽可能长时间使用设备 • 升级较慢的系统以充分利用它 • 考虑租赁,以便你可以换取更快的系统 重复使用 • 翻新 回收 • 电子设备可以回收利用金属、塑料、玻璃等。 • 请咨询你购买设备的地点或制造商,有些提供回收计划 资料来源 1. www.dep.state.fl.us/waste/categories/electronics/pages/contacts.htm 2. http://florida.earth911.org 3. www.svtc.org/cleancc/pubs/poisonpc2004.htm
高铬制革污泥是环境中铬污染的重要来源。作为最广泛使用的鞣制材料,碱式硫酸铬用于将易腐烂的胶原结构转化为不易腐烂的皮革基质(Famielec,2020)。然而,只有50%-60%的铬盐真正用于鞣制过程,其余的随后排入下水道,这不可避免地导致污水处理厂(WWTP)中的铬含量过高(Yang等,2020)。在排入生物处理系统之前,废水先用石灰和硫酸亚铁进行预处理,以去除溶解的铬和其他废化学品。大量沉淀的铬与其他有机沉积物一起作为初级化学污泥排出(Pantazopoulou和Zouboulis,2019)。此类污泥不仅富含不可生物降解的有机物,还富含不同存在形态的铬,增加了其有效处理的难度。随着环境的变化,制革污泥中的铬可能由三价铬转变为六价铬(Alibardi和Cossu,2016),六价铬的毒性是三价铬的10~100倍,且迁移性强、生物活性更高,具有致癌性和生物累积性(Singh等,2021)。高铬制革污泥因具有潜在的毒性,已被许多国家列为危险废物,其处置和资源回收受到严格限制。含铬制革污泥若处置不当会造成二次污染,给制革行业和环境带来巨大挑战(Malaiškien ˙e等,2019)。目前,含铬制革污泥的常见处理方法是焚烧(Kavouras等,2015),产生的灰渣则进行卫生填埋(Alibardi和Cossu,2016)。然而,焚烧过程存在一些固有的缺陷,主要问题包括产生灰烬中重金属的挥发、再分布和浸出潜力引起的慢性和急性毒性(Yu等,2021)。同时,作为一种新兴的污泥处理技术,热解由于其具有同时进行营养物回收( Hossain et al.,2020)、目标能量回收、重金属(HMs)的固定化与环境保护(谢等,2021)。污泥热解可生成高价值的燃料材料和低价的污染物去除生物炭(李等,2019;曾等,2021),可稳定有毒物质,降低其对环境的威胁(王等,2021)。而生物炭中的重金属因其对人类健康和全球环境的潜在不利影响而受到越来越多的关注。研究表明,由于重金属比有机物具有更高的热稳定性,在污泥热解过程中,大多数有毒重金属仍然富集在污泥生物炭中(王等,2022)。重金属的固定和稳定取决于污泥的性质和热解条件。
摘要:在这项工作中,使用生物聚合物壳聚糖和天然粘土来获得复合材料。这项研究的总体目的是通过添加粘土来改善纯壳聚糖珠的性能(孔隙率,热稳定性和密度),并获得基于壳聚糖的复合材料,以使用蒙古资源从水溶液中吸附重金属,并使用蒙古资源来吸附重金属,并研究吸附机制。天然粘土用酸和热进行预处理以去除杂质。将壳聚糖和预处理的粘土以不同的比率(8:1,8:2和8:3)混合,以获得化学加工,以获得复合珠以吸附铬离子。研究了Cr(III)和Cr(VI)的吸附,这是溶液pH,时间,温度,铬溶液的初始浓度和复合珠的质量的函数。发现,从壳聚糖的混合物中获得的复合珠和质量比为8:1和8:2的粘土分别具有最高的吸附能力(23.5和17.31 mg·g -g -1),Cr(iii)和Cr(iii)和Cr(vi)的吸附能力分别为最佳条件。使用XRD,SEM -EDS,BET和TG分析研究了通过将壳聚糖和粘土混合为8:1和8:2的复合材料的性质。根据XPS分析结果讨论了吸附机制。可以证实,铬离子以其原始形式吸附,例如Cr(iii)和Cr(VI),而无需进行氧化或还原反应。此外,在吸附过程中,CR(III)和Cr(VI)与复合珠的羟基和氨基群有关。吸附过程的动力学,热力学和等温分析表明,壳聚糖/粘土复合珠与CR(III)和Cr(VI)离子之间的相互作用可以视为二阶入学热反应,因此可以使用langmuir iSotherm模型来评估吸附。可以得出结论,复合珠可以用作去除铬离子的吸附剂。
1 公共卫生定量方法系,UPRES-EA-7449 Reperes,EHESP,雷恩大学,法国雷恩,2 马德里 Salud 国际卫生中心,马德里市议会,西班牙马德里,3 瓦伦西亚社区健康与生物医学研究促进基金会 (FISABIO),西班牙瓦伦西亚,4 巴利亚多利德国家流感中心,巴利亚多利德大学临床医院,西班牙巴利亚多利德,5 圣地亚哥大学临床医院儿科服务,西班牙圣地亚哥德孔波斯特拉,6 圣地亚哥健康研究所,圣地亚哥德孔波斯特拉大学,西班牙圣地亚哥德孔波斯特拉,儿科遗传学、感染和疫苗组 (GENVIP),7 预防医学和公共卫生系公立,西班牙马德里胡安卡洛斯国王大学,8 西班牙马德里赛诺菲巴斯德西班牙公司,9 法国里昂赛诺菲巴斯德全球公司,10 法国里昂赛诺菲巴斯德欧洲公司,11 西班牙马德里 IQVIA