摘要 - 本文介绍了Robodexvlm,这是一个用于机器人任务计划的创新框架,并掌握了配备灵敏手的协作操纵器的检测。以前的方法着眼于简化且有限的操纵任务,这些任务通常忽略了以长期培训方式抓住各种对象相关的复杂性。相比之下,我们提出的框架利用灵巧的手能够抓住不同形状和大小的对象,同时根据自然语言命令执行任务。所提出的方法具有以下核心组件:首先,设计了一个具有任务级恢复机制的稳健任务计划器,该机制设计了视觉语言模型(VLMS),这使系统能够解释和执行长序列任务。第二,基于机器人运动学和正式方法提出了语言引导的灵活掌握感知算法,该方法是针对带有多种物体和命令的零摄像的灵巧操作量身定制的。全面的实验结果验证了Robodexvlm在处理长层场景和执行灵巧抓握方面的有效性,适应性和鲁棒性。这些结果突出了该框架在复杂环境中运行的能力,展示了其进行开放式灵巧操作的潜力。我们的开源项目页面可以在https://henryhcliu.github.io/robodexvlm上找到。
量子卷积神经网络(QCNN)代表量子机学习中的一种有希望的方法,为量子和经典数据分析铺平了新方向。由于缺乏贫瘠的高原问题,训练量子神经网络(QNN)及其可行性,这种方法特别有吸引力。但是,将QCNN应用于经典数据时会产生一个限制。当输入量子数的数量为两个功率时,网络体系结构是最自然的,因为每个池层中的数量减少了两个倍。输入量子位的数量确定可以处理的输入数据的尺寸(即功能数量),从而限制了QCNN算法对现实世界数据的适用性。为了解决此问题,我们提出了一个QCNN体系结构,能够处理任意输入数据尺寸,同时优化量子资源(例如辅助量子器和量子门)的分配。这种优化不仅对于最大程度地减少计算资源很重要,而且在嘈杂的中间量子量子(NISQ)计算中至关重要,因为可以可靠地执行的量子电路的大小是有限的。通过数值模拟,我们基准了具有任意输入数据维度的多个数据集的各种QCNN体系结构的分类性能,包括MNIST,Landsat卫星,时尚 - 纳斯特和电离层。结果验证了提出的QCNN体系结构在利用最小资源开销的同时实现了出色的分类性能,当可靠的量子计算受噪声和缺陷限制时,提供了最佳解决方案。
组合脑电图和fMRI允许整合精细的空间和准确的时间分辨率,但如果实时执行以实现神经反馈(NF)循环,则会引起许多挑战。在这里,我们描述了在运动成像NF任务中同时获得的脑电图和fMRI的多模式数据集,并补充了MRI结构数据。这项研究涉及30名健康志愿者接受五次培训。我们在以前的工作中展示了同时EEG-FMRI NF的潜力和优点。在这里,我们说明了可以从该数据集中提取的信息的类型并显示其潜在用途。这代表了NF的EEG和fMRI的第一个同时记录之一,在这里我们提出了第一个开放访问BI-MODAL模式NF数据集,该数据集整合了EEG和FMRI。我们认为,这将是(1)多模式数据集成的进步和测试方法,(2)提高所提供的NF质量,(3)改善在MRI下获得的EEG的方法论,并(4)使用多模式信息研究了运动象征的神经标志物。
(2)在执行技术转移任务时,承包商被授权进行活动,包括但不限于:识别和保护在实验室或在实验室中或获得创建或收购的知识产权;谈判在承包商控制或拥有的实验室或拥有的实验室或获得的知识产权方面的许可协议和任务;保释;谈判所有方面并进入Cradas;提供技术咨询和人员交流;开展科学教育活动并报销可提供战略合作伙伴关系项目(SPP);提供信息交流;并提供实验室或武器生产用户设施。完全期望承包商应使用所有可用的机制来完成此技术转移任务,包括但不限于Cradas,用户设施,SPP,科学教育活动,咨询,人事交流,作业和许可,并符合本条款。
摘要。基于心理任务的大脑计算机界面(MT-BCIS)允许其用户仅通过使用通过心理任务产生的大脑信号来与外部设备进行交互。虽然MT-BCI有望用于许多应用,但由于缺乏可靠性,它们仍然几乎没有使用外部实验室。MT-BCI要求其用户发展自我调节的特定大脑信号的能力。但是,控制BCI的人类学习过程仍然相对较少了解,以及如何最佳地训练这种能力。尽管他们承诺和成就,但传统的培训计划已被证明是最佳的,并且可以进一步改善。为了优化用户培训并提高BCI绩效,应考虑人为因素。应采用跨学科的方法,以为学习者提供适当和/或自适应培训。在本文中,我们概述了MT -BCI用户培训的现有方法 - 尤其是在环境,说明,反馈和练习方面。我们提出了这些培训方法的分类和分类法,提供有关如何选择最佳方法并确定开放挑战和观点以进一步改善MT-BCI用户培训的指南。
抽象目标是量化由免疫检查点抑制剂(ICI)治疗的预先存在的自身免疫性疾病(付费)患者的免疫相关不良事件(IRAE)的风险。方法 - 对照对照研究,对法国多中心前瞻性群体进行了黑色素瘤患者,与IRAE危险因素和肿瘤学分期相匹配。通过逻辑回归评估IRAE的风险。 结果包括110例有报酬的患者,并与330个对照匹配,从2013年3月到2020年10月。。 在病例中的中位随访期间,对照组为6.9个月,与对照组相比,在病例中发展全级和≥3级伊拉斯的ORS(95%CI(1.56至2.27))和1.44(分别为95%CI(1.08至1.82))。 带薪患者的多种伊拉斯(或1.46,95%CI(1.15至2.67))的风险增加,而IRAE发作的时间较短。 相比之下,与IRAE相关的死亡率或治疗率没有差异,并且具有里程碑意义的分析显示在病例中24个月的生存率更好(P = 0.02)。 30%的病例在随访期间经历了有偿爆发,基线免疫抑制并不能阻止IRAE发生。 最后,我们报告了付费临床子集与特定器官特定的IRAE之间的关联。 在我们的研究中结论是,有报酬的患者面临全级,严重和多个伊拉斯的风险,但比对照组的生存期更好的24个月。 因此,有报酬的患者应有资格接受ICI治疗,但受益于IRAE发生的密切监测,尤其是在治疗的头几个月中。通过逻辑回归评估IRAE的风险。结果包括110例有报酬的患者,并与330个对照匹配,从2013年3月到2020年10月。在病例中的中位随访期间,对照组为6.9个月,与对照组相比,在病例中发展全级和≥3级伊拉斯的ORS(95%CI(1.56至2.27))和1.44(分别为95%CI(1.08至1.82))。带薪患者的多种伊拉斯(或1.46,95%CI(1.15至2.67))的风险增加,而IRAE发作的时间较短。相比之下,与IRAE相关的死亡率或治疗率没有差异,并且具有里程碑意义的分析显示在病例中24个月的生存率更好(P = 0.02)。30%的病例在随访期间经历了有偿爆发,基线免疫抑制并不能阻止IRAE发生。最后,我们报告了付费临床子集与特定器官特定的IRAE之间的关联。在我们的研究中结论是,有报酬的患者面临全级,严重和多个伊拉斯的风险,但比对照组的生存期更好的24个月。因此,有报酬的患者应有资格接受ICI治疗,但受益于IRAE发生的密切监测,尤其是在治疗的头几个月中。
摘要 - 机器人很容易犯错,这可能会对他们在与人类用户的协作任务中的队友的信誉产生负面影响。从这些失败中检测和恢复对于维持用户的有效信任水平至关重要。但是,机器人可能会失败而不意识到它。检测这种失败的一种方法可能是分析人类的非语言行为和对失败的反应。这项研究调查了人类凝视动力学如何表明机器人的失败,并检查了不同类型的故障如何影响人们对机器人的看法。我们与27名参与者进行了一项用户研究,与机器人移动操纵器合作解决了Tangram难题。机器人被编程为经历两种类型的故障 - 执行和决策 - 在任务的开头或结束时发生,无论是否确认失败。我们的发现表明,机器人故障的类型和时机显着影响参与者的凝视行为和对机器人的感知。具体来说,执行故障导致了更多的目光转移并增加了对机器人的关注,而决策失败导致感兴趣领域的凝视过渡的熵较低,尤其是在任务结束时发生故障时。这些结果表明,凝视可以作为机器人故障及其类型的可靠指标,也可以用于预测适当的恢复动作。索引术语 - 动物失败,凝视动态,人机协作
近年来,许多研究都使用沉浸式虚拟现实(VR)来与真实环境尽可能地分析感知运动的协调(Bideau等,2010; Bideau et al。,2004; Ranganathan and Carlton and Carlton,2007; Vignais et; Vignais et al。,2009; Faure et al。,2020)。对VR的这种强烈兴趣创造了准确控制设备提供的信息,与环境的相互作用和任务的约束的可能性(例如Vignais等,2009; Choi等,2021)。在这种情况下,需要进行研究,以表征虚拟环境中可能的运动动作,这是在深度维度上恰当的(Armbrüster等,2008; Vienne等,2020)。为了解决这一目标,我们的研究团队已经开发了一项视觉运动跟踪任务,以操纵和评估不同虚拟约束对行动参与,尤其是在深度维度上的影响。跟踪任务的原理是移动效应器,以使其与移动目标保持尽可能近,可以通过互动