合作的异构多智能体任务要求智能体以灵活和互补的方式行事,以最大限度地利用其多样化的能力。针对这一挑战的基于学习的解决方案涵盖两个端点之间的范围:i)共享参数方法,通过为每个智能体分配一个 ID,在单一架构内编码不同的行为,这种方法具有样本效率,但行为多样性有限;ii)独立方法,为每个智能体学习单独的策略,以样本和参数效率为代价实现更大的多样性。先前针对异构多智能体团队的学习工作已经通过学习智能体类别的共享参数或独立策略探索了这一范围的中间地带,从而允许在多样性和效率之间进行折衷。然而,这些方法仍然没有推理智能体能力对行为的影响,因此不能推广到看不见的智能体或团队组成。受到最近迁移学习和元强化学习研究的启发,并在基于特征的任务分配的先前研究的基础上,我们提出了能力感知共享超网络 (CASH),这是一种用于异构协调的新型软权重共享架构,它使用超网络明确推理持续代理能力和局部观察。直观地说,CASH 允许团队学习共享的决策策略(由共享编码器捕获),这些策略可以通过共享超网络根据团队的个人和集体能力轻松调整。我们对两个异构协调任务和三个标准学习范式(模仿学习、基于价值和策略梯度强化学习)进行了详细的实验,展示了我们的设计如何与底层学习范式无关。结果表明,CASH 生成了适当多样化的行为,在训练和零样本泛化过程中,其任务性能和样本效率始终优于基线架构。值得注意的是,CASH 仅使用基线使用的可学习参数的 20% 到 40% 就实现了这些改进。我们所有的代码都可以在 https://github.com/kfu02/JaxMARL 上找到。
1,2,3,4 印度浦那国防学院计算机科学系 摘要 论文“量子机器学习:利用量子计算增强学习算法”探讨了将量子计算原理集成到传统机器学习技术中,旨在解决可扩展性和计算效率低下等限制。它介绍了量子计算的基本概念,包括叠加和纠缠,以及它们在加速机器学习过程中的应用。该研究强调了量子算法通过更有效地处理大数据集和探索更大的假设空间来显着提高机器学习任务性能的潜力。讨论的关键量子机器学习算法包括量子支持向量机 (QSVM)、量子主成分分析 (QPCA) 和量子神经网络 (QNN),它们都利用量子力学来克服传统算法面临的计算障碍。量子近似优化算法 (QAOA) 也因其能够更有效地优化机器学习模型而受到关注。虽然量子机器学习 (QML) 的理论优势前景广阔,但这些技术的实际应用目前受到现有量子硬件的限制。这项研究通过研究 QML 在解决复杂数据处理挑战方面的潜在优势和未来影响,为新兴的 QML 领域做出了贡献。关键词:量子机器学习 (QML)、量子计算算法、量子支持向量机 (QSVM)、量子神经网络 (QNN)、量子近似优化算法 (QAOA)。1. 简介量子计算是计算领域的一种范式转变,它利用量子力学原理以传统计算机无法做到的方式处理信息。量子计算的核心是使用量子比特,它们可以存在于状态叠加中——不像传统比特那样只有 0 或 1。量子纠缠和叠加使量子计算机能够执行并行计算,与特定任务的传统算法相比,它有可能实现指数级的加速。关键算法,例如用于分解大数的 Shor 算法和用于数据库搜索的 Grover 算法,已经证明量子计算机可以比传统计算机更有效地解决某些问题 [1]。机器学习 (ML) 是人工智能 (AI) 的一个子集,涉及训练算法来学习
中型无人机平台 加利福尼亚州埃尔塞贡多 + 莫哈韦——国防和航空航天创新者 Cambium 成功完成与位于加利福尼亚州中国湖的美国海军空战中心武器部 (NAWCWD) 的合同,以推进和现场测试下一代生物制造热防护系统 (TPS),以提高无人机的任务性能和生存能力。该项目由海军研究办公室 (ONR) 资助,涉及生产先进的生物材料并在旨在模拟对抗措施对无人机影响的飞行中火灾测试中展示其有效性。美国国防和商业客户使用的经济高效的 Group 2 无人机的机翼蒙皮被替换为由生物合成复合材料制成的原型机翼蒙皮,直至结构支撑。使用燃烧材料的遥控点火,机翼蒙皮经受了快速加热和火灾事件。在超过二十次飞行过程中,火焰撞击机翼蒙皮的长度不会导致火焰垂直或横向蔓延、机翼蒙皮结构完整性破坏或任何其他性能下降。Cambium 的新型 TPS 经过精心设计和制造,可以更好地保护硬件免受热量、火灾、对抗措施的快速加热影响以及飞行过程中经历的严重气动加热和压力负荷。现有的 TPS 制造速度慢,供应严重受限。Cambium 正在开发具有类似高热稳定性和机械强度特性的替代 TPS,同时具有更简单的制造工艺和稳定的国内供应链。Cambium 与 NAWCWD 签订了积极的合作研究和开发协议 (CRADA),重点是开发下一代 TPS,该 TPS 可以通过行业认证并集成到广泛的高价值国防和航空航天性能系统中。“生物合成复合材料技术可以帮助确保美国始终处于技术创新和发展的前沿,”NAWCWD 研究部主任 Mark Wonnacott 说。 “这些材料具有出色的热稳定性和耐火性,因此可用于国防部的各种应用。与政府最近对生物制造的投资同时,这些类型的演示将使生物技术能够快速转型以支持作战人员。” Cambium 联合创始人兼首席执行官 Simon Waddington 表示:“Cambium 的使命是通过从分子层面重新设计产品以大幅提高可制造性,使高性能硬件更好、更快、更便宜。”“该项目完美地展示了我们的技术平台在解决棘手材料挑战中的应用,我们期待与 NAWCWD 在一系列先进材料和应用挑战上继续合作。”
宠物分割算法在临床相关任务上的可靠性能是其临床翻译所必需的。然而,这些算法通常使用优异构件(FOM)进行评估,这些算法(FOM)未明确设计以与临床任务性能相关。这样的FOM包括骰子相似性系数(DSC),Jaccard相似性系数(JSC)和Hausdorff距离(HD)。这项研究的目的是研究使用这些任务无关FOM的PET策略算法是否会产生与临床相关定量任务的评估一致的插入。方法:我们进行了一项回顾性研究,以评估使用DSC,JSC和HD评估分割算法的一致性,并在估算非宠物宠物的主要小细胞癌症患者的原发性肿瘤的代谢性肿瘤体积(MTV)和总病变糖素分析(TLG)的任务上。PET图像是从美国放射学学院想象网络6668/放射疗法肿瘤学组0235多细胞临床试验数据中收集的。这项研究是在2种情况下进行的:(1)评估常规分割算法,即基于阈值的算法(SUV MAX 40%和SUV MAX 50%),边界检测(Snakes)和随机建模(Markov Random -Forner -Firfor -fland -fander -flost -Fird -Eld –Gaussian混合模型); (2)评估网络深度和损耗函数对基于最先进的U-NET的性能的影响 - 基于基于的分割算法。结果:基于DSC,JSC和HD的常规销售算法的评估表明,SUV最大40%的表现明显优于SUV最大50%。然而,SUV最大40%在估计MTV和TLG的任务上的准确性较低,在整体归一化偏置中分别增加了51%和54%。同样,马尔可夫随机场 - 高斯混合物模型在任务-Nostic FOM的基础上显着超过了蛇的表现,但在估计的MTV中产生了24%的偏差。对于基于U-NET的算法,我们的评估表明,尽管网络深度并未显着改变DSC,JSC和HD值,但较深的网络在估计的MTV和TLG中产生的较高的精度分别降低了91%和87%。此外,尽管不同损耗函数的DSC,JSC和HD值没有显着差异,但仍存在估计的MTV和TLG偏差差异73%和58%。结论:使用任务不合稳定FOM对PET分割算法的评估可能会产生不一致的发现
摘要 - 人类机器接口(HMI)和大脑计算机接口(BCI)最近已成为许多机器控制或计算机应用程序的有效解决方案,以便发送直接控件的命令或提供在任务执行过程中纠正某些机器人操作的反馈[1],[2],[2],[3]。但是,设计一个高效有效的BCI系统存在许多挑战,该系统需要减少涉及人类大脑的精神努力,因此它可以成为日常任务的实用工具,而无需要求额外的大脑努力。在相关作品中,由放置在人头皮上的外部电极获得的脑电图(EEG)信号被用作实施算法的输入,以纠正机器人任务性能期间可能的故障和错误[4],[5]。尽管有很多工作重点是使用BCI,目的是基于EEG信号检测到实时反馈,但将其用作算法输入以纠正机器人任务期间可能的故障和错误的想法,就像在本文导航期间提议的障碍避免案例一样,仍然是一个挑战性的目标[6]。此外,大多数现有的BCI协议用于使人类参与机器人控制循环,要求用户观察到完整的视觉和大脑浓度,以便在不同的认知情况下具有良好的信号[1]。这项研究的目的是设计基于BCI的协议,该协议与轮椅机器人控制系统一起在室内方案中进行安全导航,以避免板载传感器设备未检测到的障碍。此外,特定协议的设计的目的是唤起和收集将与ROS集成(机器人操作系统)的BCI系统进行培训和测试的脑电图数据。在ROS环境中,BCI将衬有一个已经开发的包装[7] - [9],从而产生虚拟障碍并支持人类在循环方法集成中。设计的协议是通过使用仿真平台(即凉亭)实现的,包括环境和特定的移动机器人,即智能轮椅。智能轮椅可以在室内场景中自动导航,避免使用智能轮椅的可用传感器,避免了可能的障碍物,而无需任何人类干预。但是,如果传感器在障碍物检测中可能失败,由于阻塞或意外的障碍位置,人类参与机器人路径计划控制可以改善人类安全。在BCI系统的培训阶段,要求用户观察机器人试图避免
摘要:眼动界面是一种新兴技术,用户只需注视图形用户界面 (GUI) 即可控制它们。然而,使用凝视控制的 GUI 可能是一项艰巨的任务,会导致认知和身体负荷过重以及疲劳。为了应对这些挑战,我们提出了基于生物反馈的自适应人机辅助人机界面 (HA-HCI) 的概念和模型。该模型可以有效和可持续地使用由生理信号(例如凝视数据)控制的计算机 GUI。所提出的模型允许基于阻尼谐振子 (DHO) 模型在人机交互过程中进行分析性人类表现监测和评估。为了测试该模型的有效性,作者从 12 名玩凝视控制计算机游戏的健康志愿者那里获取了凝视跟踪数据,并使用奇偶统计分析对其进行了分析。实验结果表明,所提出的模型有效地描述和解释了注视跟踪性能动态,包括 GUI 控制任务性能的主体变化、长期疲劳和训练效果,以及基于注视跟踪的控制任务期间用户性能的短期恢复。我们还分析了现有的 HCI 和人类性能模型,并开发了现有生理模型的扩展,以开发自适应用户性能感知界面。所提出的 HA-HCI 模型从用户性能的角度描述了人与生理计算系统 (PCS) 之间的交互,结合了与 PCS 的标准 UI 组件交互的性能评估程序,并描述了系统应如何应对生产力 (性能) 的损失。我们通过设计眼控游戏进一步证明了 HA-HCI 模型的适用性。我们还开发了一个基于阻尼谐振的分析用户性能模型,该模型适用于描述基于注视跟踪的 PC 游戏性能的变化。使用奇偶分析测试了该模型的有效性,结果显示存在很强的正相关性。阻尼振荡模型建立的用户个人特征可用于根据玩家的游戏技能和能力对玩家进行分类。实验结果表明,玩家可以分为学习者(阻尼因子为负)和疲劳者(阻尼因子为正)。我们发现振幅和阻尼因子之间存在很强的正相关性,这表明良好的启动者通常疲劳率较高,而启动缓慢的疲劳率较低,甚至可能在比赛中提高其表现。提出的 HA-HCI 模型和分析用户性能模型为开发自适应的人性化 HCI 提供了一个框架,该框架能够监控、分析和提高使用基于生理计算的用户界面的用户的性能。所提出的模型在提高未来人类辅助凝视控制界面系统的可用性方面具有潜在的应用。
在发育过程中,通过产生中间基底祖细胞的产生,直接或间接地从根尖祖细胞的时间调节序列中产生皮质神经元。这些主要祖细胞类型之间的平衡对于生产适当的神经元数量和类型至关重要,因此,破译控制这种平衡的细胞和分子提示很重要。在这里,我们解决了细胞周期调节剂Cdc25b磷酸酶在此过程中的作用。我们表明,在性别的性爱祖细胞中删除Cdc25b的发展小鼠新皮层,导致TBR1 1神经元的产生的短暂增加,而TBR2 1基础祖细胞的牺牲。这种表型与细胞周期的G 2相的延长相关,总细胞周期长度不受影响。在子宫电气和皮质切片培养物中,我们证明了TBR2 1基础祖细胞产生的缺陷需要与CDK1相互作用,这是因为Cdc25b突变体中G 2相延长。一起,这项研究确定了在皮质发育的早期阶段,在直接与间接神经发生中Cdc25b和G 2相长的新作用。
欢迎来到本文,我们将为您提供有关计算机组件的所有必要信息。了解组成计算机的不同元素对于掌握其功能并在获取或更新设备时做出明智的决定至关重要。在本文中,我们将研究计算机最重要的组件,从处理器到外围设备,并根据您的需求和预算提供有关选择最佳组件的建议。什么是计算机?在潜入计算机的组件之前,必须了解计算机是什么及其主要功能。一般而言,计算机是一种能够以自动方式处理信息并执行各种任务的电子设备。计算机都在个人和专业的各种环境中使用,并且是现代生活中必不可少的工具。计算机的基本组件是什么?一台计算机由几个组件组成,以启用其正确的功能。计算机的基本组件包括:处理器内存RAM硬盘驱动器主板图形卡电源监视器键盘和鼠标端口以及有关这些组件的连接对于理解它们在购买或升级设备时如何共同工作并做出明智的决策至关重要。知道每个组件的作用将有助于您确定哪些方面与您的需求和预算最相关,从而可以选择适合您的最佳组件。什么是处理器,如何工作?处理器:计算机的大脑处理器是计算机最关键的组件之一,因为它执行指令并执行系统功能所需的计算。充当计算机的大脑,处理器处理信息并执行所需的操作。处理器,也称为CPU(中央处理单元),是负责执行指令和执行计算机操作所需的计算的芯片。处理器通过一系列打开和关闭的晶体管来代表构成计算机中信息基础的二进制值(0s和1)。处理器类型:当前市场中的英特尔与AMD,英特尔和AMD是处理器的两个最知名的制造商。两个品牌都提供针对各种需求和预算量身定制的不同处理器模型。Intel以其在游戏和视频编辑等单线程任务中的出色性能而闻名,而AMD则提供了更好的多任务性能,例如3D渲染和视频转编码。如何选择适合您需求的处理器选择合适的处理器涉及考虑因素,例如您计划如何使用计算机,预算约束以及处理能力和内存的特定要求。técnicasdel procesador:»Qué必要的MIS Computadoras?Una Computadora U Ordenador es Un Equipoeleto electo compuesto diferentes partes que funcionan de Maneralógicapara para para para a los usuarios automatizar tareas。Para Que Una PC Sea Capaz de Realizar Diversas tareas,Como Desarrollar软件O Jugar Videojuegos,Necesita Tener Tener Soporte de Hardware。###máter卡Máter卡是计算机的主板,并与所有重要组件连接。 div>它的主要功能是连接处理器,存储单元,RAM和其他元素。 div>###微处理器(CPU)微处理器(CPU)是处理通过计算机传递的所有信息的负责部分。 div>由于其控制硬件和软件的能力,通常被认为是计算机的大脑。 div>当前,微处理器是由带有许多微观电路的单个硅板制成的。 div>### RAM内存RAM是一种存储临时数据和结果的内存。 div>微处理器处理信息并产生结果后,RAM负责保存这些结果以供以后使用。 div>在任何计算机上启动应用程序程序时,处理器开始处理与软件操作指令有关的数字数据时,会发生操作内存。 div>使用该程序时,RAM会存储与其使用相关的所有信息,并将其发送给处理器以“处理它”。 div>RAM和处理器之间的这种循环工作对于计算机所知的工作至关重要。 div>由于它们处理了许多文件,尤其是现代文件,因此设备必须具有能够支持使用不同程序的RAM容量。 div>从这个意义上讲, PC的RAM越大,执行程序时的性能和速度就越大。 div>硬盘驱动器,HDD或刚性光盘是计算机用来以不同格式保存文件和数字数据的设备。 div>它的主要功能是为用户保存信息,这些信息可以从文本和多媒体文件到软件和其他内容。 div>这些设备将信息存储在无限期的时间内,这意味着当计算机熄灭时,文件仍存储在硬盘驱动器上。 div>硬盘驱动器具有铝制生产的内部表面,可存储类似于正常CD的数据。 div>但是,不仅可以读取,还可以在这些设备中删除和存储无尽的文件。 div>当前有几种类型的HDD,是SATA类型台式计算机和笔记本电脑最常用的HDD。 div>近年来,其他类型的硬盘的普及增加了,例如SSD可以使您传输和读取文件的速度比常规硬盘驱动器快得多。 div>视频卡或图形卡是可以连接到计算机主板的组件,以处理旨在在监视器或任何连接的输出设备上表示的CPU生成的所有文件。 div>多亏了这张卡,计算机可以接收并处理更多试图在屏幕上表示图像的数字数据。 div>图形卡具有自己的RAM和一个独立的处理单元,因此,它在工作时不会损害计算机其他组件的一般性能。 div>许多图形软件,视频编辑软件和游戏都需要专用的视频卡以在计算机上正常运行。至于网卡(也称为网络接口控制器(NIC)),它是连接到主板的计算机硬件的基本组件。它有多个端口,允许设备通过以太网电缆连接到局域网(LAN)或Internet。但是,有多种类型的网卡,有些可以启用无线Wi-Fi连接。电源单元(PSU)也称为电源,负责从电网接收交替电流,并将其转换为计算机各种电路的直流电流。它为每个组件提供了正确功能所需的确切电压,而不会中断或故障。现代计算机通常具有内置电压保护器,这有助于防止过度电气潮流造成的损坏。监视器或显示是一种可视化计算机接口并允许用户与之交互的设备。用户可以通过此设备观察计算机上执行的过程和任务。监控器类似于传统的电视,以像素显示处理的数据。技术的进步允许更薄,更紧凑的显示器提供更好的图像质量。键盘或键盘是一种输入设备,它使用户可以通过按键将数据输入计算机。键盘通常类似于传统的打字机,带有字母,数字,符号和特殊字符以及功能键。有不同类型的键盘,而没有标准布局用于钥匙分布。计算机键盘的主要功能是提供一种实用且舒适的方法,以将数据输入计算机。鼠标或Raton是连接到计算机并允许用户与操作系统接口进行交互的输入设备。鼠标设计为在平坦的表面上移动,在用户这样做时通过传感器捕获其运动。移动信息将转换为发送到计算机的数据。计算机接收到这些数据并将它们解释为运动,这反映在光标的位移中,这是计算机接口上显示的可移动图标。多亏了鼠标,人们可以通过PC的操作系统导航,并更实际,更简单地执行各种任务。光学驱动器读取器也称为光学驱动器读取器,该设备已连接到计算机的主板,并用作存储在CD,DVD或Bluray Discs上的数据的输入和阅读设备。光学驱动器读取器允许用户读取或复制存储在这些媒体格式上的文件。此外,它可以通过光驱动器将文件从硬盘存储到这些光盘上。然而,随着时间的流逝,由于其存储容量有限,这些光盘的使用变得过时了。软盘驱动器像光学驱动器读取器一样,该设备是一种输入设备,可读取软盘或灵活的磁盘。它在与CD读取器相同的原理下发挥作用,但现在认为它在新的计算机生产中已过时和停止。软件软件的计算机方面包含机器功能所需的所有无形元素。这包括计算机自动,编程或指示执行各种任务的说明,应用程序和命令。从操作系统到计算机上存储和使用的数据,所有这些数字组件对于计算机正确运行至关重要,因此它们被共同称为“软件”。