当前设施能力:如今,在国际空间站上,科学家有能力在轨道内和舱外执行广泛的科学研究。对于加压环境之外的有效载荷,我们拥有无线和有线数据连接、加热和冷却功能以及远程控制电源连接。一些有效载荷具有手动控制机制,可在发生异常时由机器人操作。对于在国际空间站加压空间内运行的有效载荷,POIC 拥有多个标准化有效载荷机架,提供一套资源,即 ExPRESS 机架和基本 ExPRESS 机架 (BER)、两个用于需要封闭清洁环境的实验的手套箱,以及部署的有效载荷在舱内其他地方运行以进行自适应操作的能力。ExPRESS 机架可以提供电力、数据、冷却、烟雾探测、氮气、真空和指挥能力,同时保持有效载荷开发人员可以构建的标准尺寸。BER 更简单,不提供真空或氮气,但允许比标准 ExPRESS 机架中的有效载荷更大的有效载荷。
• 制导、导航和控制 • 卫星星座遥感 • 轨迹设计和优化工具 • 任务操作软件 • 项目成本估算 • 辐射分析 • 图形渲染
太空飞行力学是研究航天器在推力、重力和阻力等力的影响下的运动的领域。太空飞行力学在太空任务的每个阶段都至关重要,从太空任务设计、系统工程到任务操作。
WBS 描述 1 项目管理 2 系统工程师 3 安全和任务保障 4 科学与技术 5 有效载荷仪器 6 航天器 7 任务操作 8 运载火箭/服务 9 地面系统 10 系统集成与测试
MACE(现代空战环境)是一种基于物理的全频谱计算机生成/半自动化部队 (CGF/SAF) 应用程序,具有庞大且用户可扩展的战斗序列,能够进行多对多模拟,同时在交战级别具有非常高的保真度。MACE 可以模拟先进的第五代系统,包括低可观测平台和有源和无源电子扫描阵列 (AESA 和 PESA 雷达) 以及高度竞争的战场。MACE 支持分布式交互式模拟 (DIS) 架构,包括模拟管理、实体状态、火灾、爆炸和排放 PDU。MACE 非常适合独立场景创建/任务演练和分布式任务模拟。MACE 已获得美国空军分布式任务操作网络 (DMON) 的使用认证,并且是作战空军分布式任务操作 (CAF DMO) 批准的 CGF/SAF。
适合通过全面制造,组装,集成和测试来支持程序,并且技术努力正在努力完成飞行和地面系统开发和任务操作,以便在确定的成本和计划限制内满足任务绩效要求。” •阶段D:系统组装,集成和测试,启动
Astroscale与ESA达成了战略协议,因为双方双方通过交换与任务操作有关的数据和专业知识,环境监测碎片和活跃的碎屑清除,在追求ELSA-D和未来任务的合作方面具有共同的战略兴趣。
如果没有为轨道飞行器的整个使用寿命设计成功的任务操作中心,那么将卫星送入轨道就无法实现任务目标。在太空任务操作中心设计中,任务挑战在于驱动符合设计的有效载荷和平台的所需硬件和软件模块。基本操作包括有效载荷任务控制、姿态控制和稳定、频繁和定期的航天器更新以及对航天器健康和功能的日常监测。太空任务操作将持续进行,直到任务寿命结束和航天器钝化。由于电子处理的复杂性和行为、传感器和设备响应,航天器和地面站上采用自动化操作。这些操作实施工作决策算法来响应或启动特定活动。一般来说,所有系统都使用内置算法进行操作,该算法监控系统行为和响应,本质上抵消任何异常性能,以确保系统的正常运行和安全。在地面站,操作员通过短信接收任何异常情况,以便必须由人员参与的操作活动才能有效和持续地进行任务操作。
•欧洲空间标准化合作定义的自治级别(ECSS)用于任务名义操作执行:•级别E1:Tele-ecoperation•E2级:执行预先计划的任务操作,即自动操作•E3级:自动选择预填充计划,即半自治•E4级:基于外源提供目标的自主计划,并根据感官计划范式执行合成计划,即完全自主操作•推动自治的信封一个步骤