地理位置分散,包括新墨西哥州索科罗 (Det 1)、英属印度洋领地 (BIOT) 迭戈加西亚 (Det 2) 和夏威夷毛伊岛 (Det 3)。每个 Det 都配备三台光学望远镜(在整个 PWS 中称为光学传感器)。第 21 作战大队 (21 OG) 位于科罗拉多州彼得森空军基地 (AFB),通过位于佛罗里达州埃格林空军基地的第 20 空间控制中队 (20 SPCS) 的职能指挥官负责所有 GEODSS Det。GEODSS 系统通过探测和监视深空卫星来支持美国战略司令部 (USSTRATCOM) 和战区作战人员的需求。该系统探测、跟踪、识别和报告望远镜视野范围内地球轨道上所有深空人造物体。GEODSS Det 使用三台 1 米望远镜执行任务,每台望远镜的视野为 1.68 度;低光照水平、电光相机;以及高速计算机。这些光学传感器可检测从太空物体反射的太阳光。任务操作在民用日落和日出之间进行。卫星信息提供给加利福尼亚州范登堡空军基地的联合太空作战中心和第 18 太空控制中队 (JspOC/18 SPCS)。
2024 年商业航天运营法案 2024 年商业航天运营法案将创建商业空间运输管理局作为交通部内独立的运输方式。此举将承认商业航天在满足国家安全要求、保持技术领先地位、增强国际竞争力以及激励学生和培养强大的航空航天劳动力方面的重要性。该法案的一项关键规定要求交通部长通过竞争性方式将合作协议授予一所大学、非营利组织或非营利组织,以组成一个运营商业航天研究联盟的联盟。该联盟本质上是合作性的,将涉及政府、工业界、学术界和国际社会的所有相关方。潜在的研究重点领域包括针对平民航天和太空居住的人类研究计划,以及与飞行器系统和技术、任务操作、太空港以及政策和市场研究相关的研究。其他条款旨在支持国家航天港网络的发展,该网络将由现有和未来的商业航天港、政府发射和着陆场以及私人拥有和运营的发射和着陆场组成,这些发射和着陆场将共同支持进入太空的民用、商业和国家安全要求。该法案的其他条款包括:
虚拟超级光学元件可重新选择群(遮阳板)任务是一个分布式的示波器,由两个6U立方体组成,分别由40米隔开,可在极端紫外线中获得活跃太阳能区域的高分辨率图像。此任务具有挑战性,因为立方体必须在近距离接近时以前所未有的能力自主控制其相对运动。本文提出了三项贡献,使遮阳板使命能够满足其具有挑战性的要求。首先使用相对偏心/倾斜矢量分离开发了提供常规对齐期与惯性目标的分布式望远镜的被动绝对和相对轨道设计。第二,提出了指导,导航和控制系统设计,以满足苛刻的相对运动控制要求。第三,提出了一个操作概念,该概念在编队没有积极执行观察值时最小化任务操作负载。此操作概念包括解决轨道异常的安全计划。通过蒙特卡洛模拟验证了指导,导航和控制系统的性能,包括所有明显的错误源和操作约束。这些模拟表明,达到了任务要求,提供了对Cubesats准确自主形成控制的可行性的初步证明。
摘要人类机器人合作(HRC)是实现大众个性化趋势所需的灵活自动化的关键,尤其是针对以人为中心的智能制造。尽管如此,现有的HRC系统遭受了不良的任务理解和符合人体工程学的不良派系的困扰,这阻碍了善解人意的团队合作技能。为了克服瓶颈,在这项研究中提出了一种混合现实(MR)和基于视觉推理的方法,为人类和机器人的操作提供了相互认知的任务分配。首先,提出了一种启用MR的相互认知HRC体系结构,其特征是监视数字双胞胎状态,推理合作策略并提供认知服务。其次,引入了一种视觉推理方法,从每个代理商的行动和环境变化的视觉看法中学习场景解释,以使满足人类操作需求的任务计划策略。最后,提出了一种安全,符合人体工程学和主动的机器人运动计划算法,以使机器人执行生成的共同工作策略,而人类操作员则在MR环境中获得了直观的任务操作指导,以实现同情的协作。通过演示衰老电池的拆卸任务,实验结果促进了积极主动的HRC的认知智能,以进行灵活的自动化。
国家航空航天管理局(NASA)选择了由整个机构的早期职业员工领导的两项提案,用于为期两年的项目,这些提案将支持开发新的Deep Space Human Exportoration。这些提案是根据一项新计划选择的,以支持NASA劳动力,以应对将人类送往月球和火星北极星项目的挑战,因为小型飞行实验或降低风险的降低项目以实现高优势能力差距,并在MARS运动办公室(MCO)授予了高优先级的能力差距。由NASA Stennis航天中心(SSC)自治系统实验室(ASL)提交的提案称为弹性应用(ASTRA)是这些选定项目之一。NASA SSC与该项目的Sidus Space合作。sidus空间具有相关的先前经验和专业知识来支持这种整合和输液活动,这些技能是与选择Astra项目建议有关的关键组成部分。Astra将是Sidus Space的主要卫星平台的Lizziesat(LS)-1小型卫星的有效载荷骑手。作为与Sidus合作的一部分,NASA SSC团队将与Sidus合作,将Astra硬件和软件集成在LS-1上。Sidus Space负责火箭发射以部署卫星和所有任务操作。NASA SSC和Sidus团队正在为6到36个月的轨任务做准备。
更容易/更快地更换刹车和更长的更换周期 任务操作虚拟助手 (VAMO) • 战术语音和文本丰富 AI 服务,用于处理音频和非结构化文本,以减少 CPCE 中战士的认知负荷 虚拟多域指挥和控制 (VMDC2) 工具 • 虚拟现实/桌面实时协作多域 COP Stratolite 多功能 RF 的创新日合同 • 支持持续 ISR 屋顶护罩的多用途 SDR/RF 系统的创新日合同 • 陆军地面部队低 SWaPC 战术反监视的创新日合同 边缘处理器辅助目标识别 (ATR) • 陆军战略快速采购 (AStRA)/创新日合同,用于在 SWaP 受限设备上制作战术边缘 ATR 的原型 边缘处理器利用和传播 (EdgePED) • AStRA/创新日合同用于制作人工智能/机器学习可定制 ATR 功能的原型 多功能射频光子天线 (MFA) • AStRA/创新日合同为宽带多功能射频光子相控阵天线小尺寸跨域解决方案(小型 CDS)制作原型 • AStRA/创新日合同为超小型士兵可穿戴 CDS 设备制作原型
摘要 :为提高虚拟现实(VR)系统中信息获取与任务选择的效率,增强交互体验,降低用户的认知负荷,在VR场景设计阶段有效组织和利用用户的认知心理与设计要素是至关重要的。本文基于认知资源理论,重点分析用户的低认知负荷要求和对用户良好感知体验的需求,提出一种低认知负荷要求下的VR系统场景任务优化设计方法。利用人机混合智能辅助预测用户认知负荷,将智能优化遗传算法融入VR系统设计要素优化中,以低认知负荷原则为目标函数,以最小化认知负荷为目标函数,以重要知识粒度节点作为VR系统设计资源要素优化过程中的适应度函数,结合智慧城市VR系统任务信息界面的多通道认知,开展系统资源特征优化应用研究。本研究通过虚拟现实眼动实验,对VR系统中相同设计任务需求,验证并比较了传统设计流程得到的解决方案和本文方法优化的解决方案。结果表明,用户在与本文提出的优化方案交互时,认知负荷更低,任务操作体验更好。因此,本文研究的优化方法可以为虚拟现实系统的构建提供参考。
• SpaceX Demo-2 任务成功结束,龙飞船在佛罗里达州彭萨科拉附近的墨西哥湾溅落。Demo-2 机组人员被运回约翰逊航天中心进行飞行后恢复,飞船被送回 SpaceX 进行飞行后处理,并开始为即将到来的 Crew-2 任务进行翻新。 • 2020 财年末,波音公司继续处理 CST-100 Starliner,为重新进行轨道飞行测试 (OFT) 做准备。因此,NASA 未能实现 2020 财年第四季度两个商业合作伙伴完成演示任务的里程碑。 • NASA 的商业载人航天计划和 SpaceX 继续在今年秋天为 Crew-1 发射取得进展,Crew-1 Dragon 完成了最终集成和检查。2021 财年第一季度,运输到 39A 发射台与猎鹰 9 号运载火箭集成,以满足计划中的今年秋天的 Crew-1 发射。 • 美国宇航局的商业载人航天计划于第四季度向业界发布了一份信息请求 (RFI),要求提供亚轨道系统资格和商业载人亚轨道太空运输服务数据。美国宇航局将使用 11 个行业响应来通知亚轨道商业 (SubC) 活动。• 尽管美国宇航局对 COVID-19 的响应限制了对一些 NASA 和承包商设施的访问,但仍在继续执行特定任务的工作,以支持 SpaceX Demo-2 的成功发射、任务操作和机组人员的安全返回。• 整个行业/政府团队的英勇努力使项目在 COVID-19 大流行期间朝着实现强劲的商业 LEO 经济取得了显著进展。但是,由于美国宇航局未能完成两个里程碑——为自由飞行者招标颁发奖项,并且两个商业合作伙伴都完成了演示任务——该 APG 在 2020 财年被评为红色。
洛克希德·马丁公司给这个团队下达了以下指令:“ExPO(行星海洋探索)系统(客户)计划在未来探索木卫二的海底海洋。”这是一项 A 阶段研究,旨在评估自主海底任务的可行性。这项研究将模拟团队预计将面临的一些关键电信挑战。这次探索任务将面临光时通信挑战、协调深空资产挑战和水下挑战。目前没有现有的导航辅助设备。唯一可用的资源将是轨道中继卫星,允许在车辆浮出水面时在规定的时间进行定期数据传输。除了在地面站和车辆之间中继上行/下行数据外,该轨道器没有其他功能。“提供早期能力的演示,为未来的木卫二探索任务做准备。本次演示将以地球为基础,并将成为外星飞行器操作概念的技术演示。构建一个探索 AUV(自主水下航行器),以在静止的水体中搜索、识别和报告多个感兴趣的物体。报告水体中已识别物体的相对位置和每个物体的下行图像数据。轨道中继卫星将允许有限的数据传输。本次演示仅允许 3 个上行/下行窗口,每个窗口持续时间为 5 分钟。这些窗口将在任务执行开始时、任务执行 20 分钟后和任务执行 40 分钟后出现。您将无法根据当前下行窗口的数据上传数据。从设置、执行到拆卸的任务操作必须在 90 分钟内完成,执行时间为 60 分钟。”解决这个设计问题将增强洛克希德马丁公司对自主水下航行器的知识体系,特别是此类航行器在复杂水下环境中航行的能力。该团队需要以 5000 美元的预算设计和创新这个问题。
联合终端控制训练和演练系统 (JTC TRS):TACP 固定和便携式模拟器组成 JTC TRS。该模拟器项目通过提供独立和分布式任务操作 (DMO) 功能的高保真 JTAC 和战斗控制小组 (CCT) 模拟系统来训练控制作战行动空中支援的人员。JTC TRS 将能够连接到 DMO 网络,以允许地理上分离的高保真近距离空中支援平台、JTAC 和 CCT 在无风险环境中一起训练。固定模拟器使操作员能够使用与任务任务相关的定制动态场景进行联合近距离空中支援 (JCAS) 训练/任务演练。此外,该模拟器将能够使用严苛空军基地作战的战术应用为 CCT 提供战术空中交通管制训练。JTAC 模拟器提供 DMO 能力,可与机组全任务训练器、任务训练中心和空中支援行动中心 (ASOC) 联网。其主要重点是提供空地虚拟训练环境,用于网络化空地训练和任务演练能力,这将培养 JTAC 和 CCT 技能,并训练机组人员在靠近友军地面部队的情况下完成复杂的 JCAS 任务。JTAC 模拟器将使用行业标准与联合/姊妹服务空地模拟完全互操作。使用模拟器进行训练有可能通过提高空中和地面人员之间的协调技能以及提高 JTAC 和机组人员的熟练程度来减少平民伤亡、附带伤害和误伤。生产 JTC TRS 固定配置的采购策略将作为使用增量开发的渐进式采购方法执行。在生产系统准备好投入使用之前,将部署临时模拟器以支持 JTAC 资格培训和可部署 JTAC 的准备工作。DMS 努力包括移除模拟器系统内的报废软件/硬件,并转向可持续且具有网络弹性的模块化、通用开放系统架构。实施模拟器通用架构要求和标准 (SCARS) 计划下定义的要求和标准。资金可用于解决新出现的和短期通知的制造和材料短缺 (DMSMS) 问题。