主持课堂讨论,为每个任务场景选择“最佳”勘探工具。要求学生分享他们如何认为探险家在不止一种车辆能够完成这项工作的情况下选择“最佳”勘探工具进行任务方案?从具有多个兼容勘探工具的第一个任务场景开始。询问学生团体在每种兼容车辆上都是专家,分享为什么他们的车辆适合任务。毕竟所有具有兼容车辆共享的团体,询问他们认为哪种车辆最适合每种情况,为什么?鼓励学生尊重地不同意并练习探索车辆简易表面和任务场景中的证据。在每个任务方案达成了类共识后,圈子或突出显示了类勘探车辆兼容性调查中最好的车辆。
摘要 近十年来,自修复材料在空间应用领域变得极具吸引力,这是由于其技术的发展以及随之而来的空间系统和结构设计可能性,这些系统和结构能够在与微流星体和轨道碎片撞击、意外接触尖锐物体、结构疲劳或仅仅是由于材料老化而造成损坏后进行自主修复。将这些新材料整合到航天器结构设计中将提高可靠性和安全性,从而延长使用寿命和任务。这些概念将为建立新的轨道站、在月球上定居和人类探索火星带来决定性的推动力,从而实现新的任务方案。本综述旨在介绍最新、最有前景的空间应用自修复材料和相关技术,以及与它们当前的技术局限性以及空间环境的影响相关的问题。在介绍太空探索和自修复概念的前景和挑战之后,简要介绍了空间环境及其对材料性能的可能影响。然后对自修复材料进行详细分析,从一般的内在和外在类别到具体的机制。
摘要量子技术的出现,包括基于冷原子的辅助仪,是一个机会,有机会改善空间地球任务的性能。在这种情况下,CNES启动了一项评估研究,称为Grice(Gra-Diom´etrie a Interf´erom` eStiques corr'El'Es por l'Espace),以评估冷原子技术对太空测量的贡献以及对地理数据的最终用户的贡献。在本文中,我们介绍了基于长基线梯度表的重力场映射的任务方案。该任务基于两个卫星的星座,在373 km的高度上闪闪发光,每个卫星都配备了冷原子敏化计,灵敏度为6×10-10 m.s-2。τ -1 /2。激光链路测量这两种卫星与夫妻之间的距离,以产生相关的分化加速度测量。已经研究了确定有效载荷的性能的主要参数。我们就重力场的恢复原状进行了对卫星建筑的一般研究和对任务的模拟。模拟表明,该概念将在每月重力领域以下的1000公里分辨率下进行最佳性能。在1000至222 km之间的分辨率频段中,GRICE梯度方法比传统范围速率方法的改善在全球范围内的序列为10%至25%。
在班级学习(CIL)方案中,由于阶级的偏见对当前任务的偏见引起的灾难性遗忘者长期以来一直引起了重大挑战。它主要由判别模型的特征引起。随着生成性多模式模型的日益普及,我们将探索用CIL生成的歧视模型代替歧视模型。,从歧视到生成模式过渡需要解决两个关键挑战。主要挑战在于将生成的文本信息转移到不同类别的分类中。在方面,它需要在生成框架内制定CIL的任务。为此,我们提出了一种新颖的生成性多模式模型(GMM)框架,用于类增量学习。我们的方法直接使用改编的生成模型为图像生成Labels。获得详细的文本后,我们使用文本编码器来阐述文本特征,并采用匹配的功能来确定最相似的标签与分类的标签。在传统的CIL设置中,我们在长期序列的任务方案中取得了更好的影响。under少数CIL设置,与所有当前最新方法相比,我们的精度至少提高了14%,而遗忘的遗忘明显较小。我们的代码可在https://github.com/doubleclass/gmm上找到。
视线(LOS)导航是一种光学导航技术,可利用从车载成像系统获得的可见天体的方向,以估算航天器的位置和速度。将方向馈送到估计过滤器中,其中它们与观察到的物体的实际位置匹配,该位置是从船上存储的胚层检索的。作为LOS导航代表了下一代深空航天器的一个真正有希望的选择,这项工作的目的是提供有关效果的新见解。首先,分析信息矩阵以显示航天器和观察到的行星之间的几何形状的影响。然后,使用Monte Carlo方法来研究测量误差的影响(范围从0.1到100 ARCSEC)和跟踪频率(从每天的四个观测值到每两天的观察范围)。通过两个指标对导航性能的影响进行了影响。首先是3D位置和速度均方根排出,一旦估计被认为是稳态的。第二个是收敛时间,它量化了估算到达稳态行为所需的时间。模拟基于一组四个行星,这些行星不遵循共同的以heliepentric动力学的速度,而是绕太阳旋转,并以相同的(无距离)角速度的角速度旋转。这种方法允许将方案依赖性行为与导航固有属性分开,因为在整个模拟过程中观察者和观察到的对象之间的相同几何形状是相同的相对几何形状。结果为下一代自主导航系统提供了有用的指南,既可以定义硬件要求和设计适当的导航策略。然后将注意事项应用于近地球小行星的任务方案,以定义导航策略和硬件要求。显示了航天器和行星之间相对角度的重要性。在单个球衣观察方案中,当航天器和行星的位置向量之间的角度接近无效的值时,估计误差会降低。在双行星观察方案中,当两个LOS方向之间的分离角接近90时,估计误差会降低。对性能的主要影响是由测量误差驱动的,当前技术被证明能够以几百公里的顺序提供位置误差,而较低的测量误差(0.1 ARCSEC)可能在100 km以下的位置误差。最后,可以证明跟踪频率在性能中起次要作用,并且只有在收敛时间明显地影响。2022 cospar。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。