(HAAP)声明(由参加为期一年的“所有其他”巡回演出的个人填写)HAAP 计划旨在降低 PCS 成本并减少士兵及其家人的搬迁次数。根据 AR 614-200,士兵将通过选择三个选项之一来选择参加或拒绝 HAAP。(参加 HAAP 的士兵也可以申请更改基地或提前分配。每个请求将根据具体情况考虑)。(注意:并非每个人都能获得 HRC 提供的 HAAP!)夏威夷和阿拉斯加是授权的 HAAP 地点。由于陆军(授权)需求的变化,基地或提前分配可能会更改或取消,
可能会出现需要提前终止发展任务的情况。终止不会导致任务成功完成。要申请终止,参与者必须联系主办主管和/或现任主管。主办主管或现任主管可以向 LDAP 项目经理提交书面申请。LDAP 项目经理将审查并将请求转发给 DGC,DGC 将决定是否可以批准终止。LDAP 项目经理将把决定转发给参与者、主办主管和现任主管。参与者可以请求
摘要 - 现实世界的机器人任务计划是由于部分观察性而棘手的。一种降低复杂性的常见方法是将其他结构引入决策过程,例如混合可特性性,货运状态或时间扩展的动作。我们提出了可观察到的马尔可夫决策过程,这是一种新颖的公式,对任务级别的计划进行建模,其中不确定性与对象级别属性有关,以及机器人具有可寻求和准确观察对象的子例程。该模拟范围限制和视线线的传感器 - 被遮挡或外部传感器范围的传感器未观察到,但是可以通过重复观察来解决落入传感器视图之内的对象的属性。我们的模型会导致一个三阶段的计划过程:首先,机器人计划仅使用观察到的对象;如果失败,它会生成一个目标对象,如果观察到,可能会导致可行的计划;最后,它试图定位和观察目标,在每个新观察到的对象之后重新掌握。通过将LOMDP与现成的Markov计划者相结合,我们在面向对象的POMDP和MDP类似物的最先进的求解器具有相同的任务规范。然后,我们将公式应用于移动机器人成功解决任务。
大型语言模型(LLMS)已经证明了需要解决任务计划和使用外部工具(例如天气和计算器API)组合的任务的熟练程度。但是,现实世界中的复杂系统提出了有关任务计划和工具使用情况的三个普遍的挑战:(1)实际系统通常具有许多API,因此将所有API的描述以LLMS的提示馈送是不切实际的,因为代币长度有限; (2)实际系统是为处理复杂任务而设计的,基本LLM几乎无法为此类任务计划正确的子任务订单和API呼叫顺序; (3)实际系统中API之间的类似语义和功能在区分它们时都为LLM甚至人类都带来了挑战。回应,本文介绍了一个旨在增强现实世界中LLM代理的任务计划和工具使用(TPTU)功能的综合框架。我们的框架包括三个旨在应对这些挑战的关键组件:(1)API猎犬在广泛的API集合中选择最相关的API; (2)LLM FineTuner对基本LLM进行调整,以增强其在任务计划和API调用方面的能力; (3)演示选择器检索与难以区分的API相关的演示,该演示进一步用于秘密学习以提高最终性能。我们使用现实世界中的行业系统和开源的学术数据集验证我们的方法,证明了每个组件以及集成框架的功效。
摘要 - 按钮规划功能对于智能机器人在物理世界中自动运行至关重要。但是,基于传统的计划域定义语言(PDDL)方法通常会遭受组合爆炸和无效的计划时间。在本文中,我们以创新的方式提出了使用大型语言模型(LLM)增强机器人任务计划 - 使用LLMS指导PDDL计划者的搜索过程,而不是完全替换PDDL计划。LLMS通过学习的启发式方法指导PDDL计划者的搜索过程,并提供约束推理以减少搜索空间。为了解决LLM的潜在陷阱,在执行阶段添加了验证机制,以验证计划正确性。我们在真实情况下拆卸了寿命电池电池的末端评估了我们的方法。实验结果将纳入计划管道中的LLM可以显着提高计划效率和可伸缩性,同时保持计划有效性。这项研究为将语言模型与经典方法整合在一起,为实用应用增强机器人智能。所提出的框架在增强未来智能机器人系统的任务计划能力方面迈出了坚实的一步。
摘要:大型语言模型在机器人任务计划和任务分解的域中发现了效用。尽管如此,这些模型在任务执行中指导机器人的直接应用并非没有挑战。在处理更复杂的任务,与环境有效互动时遇到困难以及在此类模型直接生成的机器控制指令的实际可执行性中遇到困难。应对这些挑战,这项研究倡导实施多层大语言模型,以增强机器人在处理复杂任务方面的利用率。提出的模型通过整合多个大语言模型来促进任务的细致层次分解,其总体目标是增强任务计划的准确性。在任务分解过程中,引入了视觉语言模型作为环境感知的传感器。此感知过程的结果随后被吸收到大语言模型中,从而通过环境信息将任务目标融合在一起。这种整合反过来又导致了针对当前环境的特定特征量身定制的机器人运动计划。此外,为了增强大型语言模型的任务计划输出的可执行性,引入了语义一致性方法。此方法将任务计划描述与机器人运动的功能要求保持一致,从而确定了生成指令的总体兼容性和相干性。为了验证拟议方法的效果,使用智能无人车辆建立了一个实验平台。该平台是验证多层大语言模型在解决与机器人任务计划和执行相关的复杂挑战方面的提高效率的一种手段。
代理人共同实现共同目标的代理人具有多种应用,例如仓库自动化或灾难响应。多代理任务在计划文献中以不同的方式定义。例如,在多代理任务分配[8,9,12]和联盟形成[14,22]中,每个任务都是具有相关实用程序的一个目标。单个代理或代理团队然后根据某些优化度量自动将自己分配给任务。群方法[18,21]将代理集体的紧急行为视为任务,例如聚合或形状形成。最近,已使用正式方法,例如任务规划的时间逻辑和正确的构造综合,已用于求解不同类型的多机构计划任务[2,17,20]。用时间逻辑编写的任务,例如线性时间逻辑(LTL),允许用户捕获具有时间约束的复杂任务。现有工作扩展了LTL [15,16]和信号时间逻辑[13],以编码需要多个代理的任务。在本文中,我们考虑任务是,需要一组异质代理人来协作满足。例如,考虑
摘要 - 准确的任务计划对于控制自主系统(例如机器人,无人机和自动驾驶车辆)至关重要。行为树(BTS)被认为是任务计划中最突出的控制政策定义框架之一,由于其模块化,灵活性和可重复性。为机器人系统生成可靠,准确的基于BT的控制策略仍然具有挑战性,并且通常需要域专业知识。在本文中,我们提出了利用大语言模型(LLM)和遗传编程(GP)的LLM-GP-BT技术,以使BTS的生成和配置自动化。LLM-GP-BT技术处理以人类自然语言表达的机器人任务命令,并以计算效率和用户友好的方式将其转换为基于BT的准确和可靠的任务计划。该提出的技术是通过仿真实验系统地开发和验证的,这表明了其简化自主系统任务计划的潜力。