摘要:安全量子会议是指由多个可信用户生成完全相同的密钥以保密方式广播私人消息的协议。通过对 (arXiv:1601.00966) 中首次引入的技术进行修改,作者推导出任意拓扑量子网络中安全会议最大速率的单字母上限,其中用户可以在双向经典通信的帮助下执行最强大的本地操作,并且量子系统根据最有效的多径泛洪策略进行路由。更准确地说,作者限制了单消息多播协议可实现的最终速率,其中 N 个发送者分发 N 个独立密钥,并且每个密钥将与 M 个接收者共享。
纠缠和贝尔态来投射到最大纠缠态的量子系统上。量子隐形传态作为基于测量的量子计算,在量子计算中起着至关重要的作用。安全量子隐形传态可用于量子密码学,如量子密钥分发 [ 10 ]。它扩展了纠缠在传输量子信息方面的实际应用,这在经典物理中是没有的,并且带来了纠缠作为一种物理现象的实验实现。在过去的十年中,量子行走已成为在设计的网络中传输量子态的重要工具。量子行走能够模拟量子演化并在基于图的结构上从物理方面实验纠缠。这些特性使量子行走成为量子隐形传态协议的有力候选者。人们可以看到大量与 DTQW 相关的工作,它们作为状态转移的重要媒介,并在 [ 1 ]-[ 9 ]、[ 20 ]、[ 23 ]、[ 36 ] 中开发算法。 DTQW 中的多币算子为行走演化带来了更复杂、更详细的见解,详见 [29]-[33]。与连续时间量子行走理论相关的工作可参见 [16]、[21]、[22]、[26]、[27]。一般来说,当我们讨论量子隐形传态时,我们将发送者称为 Alice,将接收者称为 Bob,我们的目标是将 Alice 的未知量子态成功传输给 Bob。该通信协议利用了量子纠缠和测量等量子力学事件。经典通信也被用作加密代码,使通信保密且防泄漏。混合模式使通信更加私密和安全。在量子行走中,节点充当量子位,行走演化促进状态转移。有关通过量子行走进行隐形传态的工作可参见 [11]-[19]。量子行走作为量子隐形传态手段的主要优势如下:
摘要 — 为了将量子系统实际用于解决实际问题,需要将大量经典数据传输/编码到量子域。通常通过合成和初始化相应的量子态将任意经典数据编码到量子设备中。然而,当前的任意状态合成技术会产生深而复杂的量子电路,导致状态保真度低,并可能违反退相干约束。在这项工作中,我们提出了一种改进的方法和优化的电路,用于从给定的经典数据合成任意量子态。与现有方法相比,所提出的方法可产生具有较低门数、较低电路深度和高状态保真度的电路。通过在 MATLAB 和 IBM qasm 中进行模拟以及在 IBM 量子设备上的实际实现,对所提出的方法进行了评估。实验结果表明,与现有方法相比,门数和电路深度减少了一半。索引术语 — 量子计算,量子电路
结果:与非糖尿病相比,糖尿病参与者的OAB患病率增加了77%。随着与糖尿病相关标记的四分位数增加,在三种模型中,OAB单调的几率增加(所有趋势<0.001)。Glyemoglobin与OAB表现出线性关联(非线性> 0.05)。白细胞显着介导了与OAB的糖尿病相关标记(Glyemogomoglobin,禁食葡萄糖和胰岛素)之间的关联,而比例分别为7.23%,8.08%和17.74%(所有P <0.0001)。中性粒细胞部分介导了(糖emogoglobin,空腹葡萄糖和胰岛素)和OAB之间的相关性,分别为6.58%,9.64%和17.93%(p <0.0001)。XGBOOST模型的机器学习构建了最佳拟合模型,XGBOOST预测Glyemoglobin是OAB上最重要的指标。
极化转换是光子学和量子光学元件中现代应用的基础。尽管他们的应用兴趣,但仍需要基本的理论和实验努力来利用极化光学的全部潜力。在这里,我们揭示了琼斯矩阵的两个非正交特征态的连贯超级位置可以极大地提高与经典正交极化光学的任意极化变换的效率。通过用堆叠和扭曲的配方利用跨表面,我们实施了一种强大的配置,称为“非正交跨额叶”,并在实验上证明了任意输入输出偏转模式,以达到近乎100%的传输效率,以宽敞的宽带和角度增强范围和角度增强方式。此外,我们提出了一种路由方法,以投射具有四链循环圆极化成分的独立相全息图。我们的结果概述了一个强大的范式,以实现极有效的极化光学元件,以及在微波和光学频率下进行通信和信息加密的极化多路复用。
Donor Oligo 可置换约1 ~ 90nt 的长度Plasmid DNA donor Kit 可嵌入mKate Reporter 于任意指定位置应用: SNP/ insertion / deletion / protein fusion 研究
2 链由局部哈密顿量的总和控制。非可逆经典 CA 的量子类似物被表示为由非厄米哈密顿量控制的非幺正量子系统。介绍并分析了用于控制此类演化的两组可能的非厄米算子。分析所得的量子系统,并将其与选定规则的经典系统进行比较。相似之处包括收敛到相似状态,并在静态和周期性情况下表现出相同的行为。针对选定系统确定并解释了已知的量子现象,如遍历性及其由于希尔伯特空间碎片而导致的破坏,其中与 PXP 模型等经过充分研究的系统进行了比较。
基频为 60 Hz、均方根值为 0.158 V 的失真波形。这些精确失真的波形包含第 3、5、7、9、11、23、31 和 39 次谐波。选择这些谐波是出于以下两个方面的考虑:(a) 使用电力系统中常见且在电能质量文献标准中引用的谐波;(b) 保持谐波相对于频谱分析本底噪声的信噪比足够高,以使相位分辨率优于 0.001 。相对于基波,每个谐波的幅度为 10%,相位为 90 。首先使用 Digitizer1 测量包含基波和上述谐波之一的波形,然后测量包含基波和上述所有谐波的波形(图 2)。两组测量结果之间的差异不超过 0.001 。
当前的DRL算法通常假设固定数量的可能动作,然后一次选择一个动作,从而使它们在任意较大的空间中的资源分配问题效率低下。顺序操作选择需要为所选的每个操作更新状态,这增加了决策深度,状态空间,不确定性和执行次数。这会影响算法的收敛性并减慢执行速度。此外,当前的DRL算法对于在线资源分配问题的效率不高,因为它们采用固定数量的操作,而任意数量的任务到达数量。为了应对这些挑战,我们提出了一种新颖的结合作用选择方法,使DRL算法能够同时从具有任意数量的可能动作的集合中选择一个任意数量的动作的联盟。通过在每个时间步骤做出同时决策,联盟行动选择避免了由多次更新状态更新的顺序决策引起的计算成本和较大的状态空间。我们使用在线组合资源分配问题评估了联盟行动选择和顺序行动选择方法的绩效和复杂性。结果表明,联盟行动选择方法保留了在线组合资源分配问题的各种在线交通需求到达率的最佳离线性能,而顺序动作选择方法的性能随着问题的大小的增加而降低。实验还揭示了联盟行动选择的计算复杂性比顺序作用选择要低得多。