摘要。在本文中,提出了针对任意单Qutrit状态的联合远程准备计划。首先,我们介绍了如何以密度运算符的形式在理想环境中远程准备任意的单Qutrit状态。然后,我们研究了与Weyl oberators相对应的四种典型类型的3D Pauli样噪声的影响:Trit-plip,T型相频率,TRIT相 - 频率和在理想环境中的T-Depolarising。对于每种类型的噪声,我们计算和分析了有限度的结果。结果表明,当考虑到trit-plip,trit-phase频率和t-偏度噪声时,实现与噪声因子和目标状态的所有系数有关。然而,当考虑t阶段频率噪声时,实现仅与目标态的噪声因子和振幅系数有关。
简介。— 生成非经典玻色子态 [1 – 3],例如压缩光、福克态和薛定谔猫态,不仅对量子力学的基础研究很重要,而且对量子技术的应用也很重要 [2,4 – 6]。例如,相空间中具有离散平移或旋转对称性的玻色子态 [7 – 14] 已被提议用于编码量子信息 [15 – 20],为硬件高效的量子纠错铺平了道路 [21 – 24]。可以通过例如交错的选择性数字相关任意相位 (SNAP) 和位移门 [25 – 27] 来制备和稳定玻色子代码态以防止耗散。最近的一系列研究 [28 – 31] 指出了一种基于汉密尔顿工程的替代被动控制方法,该方法可用于促进容错操作,例如通过抑制相位翻转错误 [28]、动态抑制与环境的耦合 [30] 以及加速代码字的状态准备 [31] 。汉密尔顿工程的另一个感兴趣领域是拓扑。由于相空间的非交换性质,在封闭的相空间环上移动的量子粒子获得类似于磁场中粒子的 Aharonov-Bohm 相的几何相。因此,相空间中的带隙格子汉密尔顿可以支持非平凡的陈数 [16,32 – 40] 。这是一个很有吸引力的特性,因为在具有物理边界的系统中,它将导致拓扑稳健的边缘传输。虽然已经展示了如何生成
对于 NISQ 设备的应用而言,在不进行完全纠错的情况下有效抑制错误至关重要。错误缓解使我们能够在提取期望值时抑制错误,而无需任何纠错码,但其应用仅限于估计期望值,无法为我们提供作用于任意量子态的高保真量子操作。为了应对这一挑战,我们建议将错误过滤 (EF) 用于基于门的量子计算,作为一种实用的错误抑制方案,而无需诉诸完全量子纠错。结果是一个通用的错误抑制协议,其中抑制错误所需的资源与量子操作的大小无关,并且不需要对操作进行任何逻辑编码。只要遵守错误层次结构,即当辅助 cSWAP 操作的噪声小于要纠正的操作时,该协议就会提供错误抑制。我们进一步分析了 EF 在量子随机存取存储器中的应用,其中 EF 提供了硬件高效的错误抑制。
细菌、真菌、病毒、酵母和原生动物等微生物污染物引起了食品制造商的极大兴趣和担忧,因为它们可能存在食物中毒或食物腐败的风险(Maruthamuthu 等人,2020 年)(Talo,2019 年)。对数字微生物数据的需求不断增长,为微生物学家和实验室专业人员提供了轻松检测微生物的机会(Egli 等人,2020 年)。这种变化可以个性化诊断和治疗,提高数字数据质量,并降低医疗成本。传统的基于培养的微生物检测方法非常耗时,而数字成像因其快速的方法而备受关注。数字微生物学还有可能对公共卫生和病原体监测产生重大影响。为了实现数字化,微生物实验室必须发展数字医学和食品分析方面的专业知识,包括数据处理、感知和基础设施(Soni 等人,2022 年)。近年来,计算机视觉、人工智能 (AI) 和机器学习 (ML) 等在大量标记数据上进行训练的方法越来越多地用于自动分析医学图像和微生物样本 (Goodswen et al., 2021)。这些方法可用于识别四种不同类型的微生物:细菌、藻类、原生动物和真菌 (Rani et al., 2022)。卷积神经网络和 ResNet-50 等模型可用于确定微生物样本的类别 (Majchrowska et al., 2021) (Rani et al., 2022) (Talo, 2019)。语义分割是一种计算机视觉方法,用于分析微生物样本的图像,当需要根据语义含义精确确定图像的不同区域时,为图像中的每个像素分配一个类标签 (Zawadzki et al., 2021)。 Faster R-CNN 和 Cascade R-CNN 等模型可用于计数微生物样本图像中的细菌菌落,这些模型可以检测单个物体并确定其类别。实例分割方法旨在通过区分图像中单个细菌菌落的不同实例并将每个像素分配给唯一的菌落来提供对图像的详细理解(Zawadzki 等人,2021 年)。Meta 公司开发和训练的 Segment Anything Model (SAM) 用于图像分割(实例分割)(Kirillov 等人,2023 年)。该模型使用超过 10 亿个掩模对 1100 万张图像进行了训练。SAM 模型具有零样本泛化的可能性,因此无需额外训练即可用于图像中对象的分割。SAM 模型可以分析来自广泛领域的图像,包括生物医学、农业、自动驾驶等。2. 方法
任意横截面的轴向应力监测是一项具有挑战性的任务。桁条是飞机蒙皮结构的主要轴向承载部件,具有典型的复杂横截面。本文研究了基于声弹性导波的压电锆钛酸铅 (PZT) 传感器的任意横截面轴向应力监测策略。为了选择对任意横截面轴向应力监测敏感的适当导波频率和模式,使用声弹性理论结合半解析有限元法研究特征导波。推导出模态形状,表明这些纵向模态对轴向应力更敏感。还考虑使用 PZT 换能器阵列来最大化所需模式。压电传感器用于在实验中激发和检测导波。给出了 T 型桁条的声弹性测量结果,表明该方法用于轴向应力监测的可行性。
从 1945 年到 1990 年,美国与强大而坚定的苏联处于两极世界,而两极世界以美国为主导的国际规则秩序为基础。尽管美国和苏联的执政政策和世界观截然相反,但他们通过多阶段、多层次的战略威慑演进,成功地在地缘政治上平衡了彼此。两国政府都决心通过可靠的核威慑来保护各自的国家利益,这增强了国际战略稳定,避免了战略冲突,并使世界共同发展和繁荣。苏联解体后,美国大幅削减了国防投资,特别是战略核力量,因为许多人认为核威胁时代已经结束。结果,大约二十年来,美国没有投资来现代化美国的战略武器库。
从 1945 年到 1990 年,美国与强大而坚定的苏联处于两极世界,而两极世界以美国为主导的国际规则秩序为基础。尽管美国和苏联的执政政策和世界观截然相反,但他们通过多阶段、多层次的战略威慑演进,成功地在地缘政治上平衡了彼此。两国政府都决心通过可靠的核威慑来保护各自的国家利益,这增强了国际战略稳定,避免了战略冲突,并使世界共同发展和繁荣。苏联解体后,美国大幅削减了国防投资,特别是战略核力量,因为许多人认为核威胁时代已经结束。结果,大约二十年来,美国没有投资来现代化美国的战略武器库。
摘要 先前的工作提供了将酉矩阵分解为一系列量子多路复用器的方法,但以这种方式创建的多路复用器电路可能高度非最小。本文提出了一种优化具有任意单量子比特量子目标函数和三元控制的量子多路复用器的新方法。对于多值量子多路复用器,我们定义了标准形式和两种新形式:固定极性量子形式(FPQF)和克罗内克量子形式(KQF)。从蝴蝶图的使用中获得灵感,我们设计了一种详尽构建新形式的方法。与以前使用经典布尔函数的基于蝴蝶的方法相比,这些新形式用于优化具有任意目标酉矩阵的量子电路。将新形式应用于各种目标门(如NOT、V、V +、Hadamard和Pauli旋转)的实验结果表明,这些新形式大大降低了三元量子多路复用器的门成本。
1 Wang Da-heng Center,海伦吉安格量子控制关键实验室,哈尔滨科学技术大学,哈尔滨150080,中国2个国家微观结构实验室,智能光学感应和操纵的主要实验室,以及工程和应用科学学院以及Nanjing University,Nanjing Univentes,Nanjing 210093,En. Del Bosque 115,Colonia Lomas del Campestre,37150León,Gto。 yqlu@nju.edu.cn†这些作者同样贡献。摘要:通过几何阶段与平面光学器件通过几何相位旋转轨道耦合(SOC)为塑造和控制近视结构光提供了有希望的平台。电流设备,从开创性的Q板到最近的J板,仅提供旋转依赖的波前调制,而无需振幅控制。然而,实现对近似SOC状态的所有空间维度的控制需要对相应的复杂振幅的自旋依赖性控制,这对于平面光学元件仍然具有挑战性。在这里,为了解决这个问题,我们提出了一种称为结构化几何相光栅的新型平面元件,该元件能够用于正交输入圆极化。通过使用微结构液晶光平取道,我们设计了一系列扁平式元素,并在实验上显示了它们在任意SOC对照方面的出色精度。该原理通过平坦的光学器件解锁了对副结构光的全场控制,为一般光子SOC态开发信息交换和处理单元提供了一种有希望的方法,以及用于高精度激光束塑形的高精度激光束的外部/腔内转换器。