摘要 本研究将讨论低通滤波器这一主题。研究范围将包括研究人员在整个实验过程中获得的数据、低通滤波器的样本图、理论和背景介绍以及数据和结果的分析。此外,研究还将研究一个名为 Multisim 的软件程序,以更准确地观察低通滤波器的行为。选择这个主题是因为这是研究人员最熟悉的滤波器类型。此外,这种类型的滤波器用于许多音频应用中,它可以消除背景噪音、消除数据分析中的特定频率、无线电调谐等等。因此,这种类型的滤波器被称为高切或高音切滤波器。这种熟悉是每个小组成员在整个课程中的先前经验和学习的结果。关键词:低通滤波器、截止频率、RC 低通滤波器、RL 低通滤波器、频率响应。1. 简介低通滤波器是只接受低频信号通过并阻止高频信号的滤波器 [1]。低频信号被定义为频率值低于截止频率的信号 [2]。此外,它分离输入信号,并根据频率值接受或拒绝信号。此外,它由与电感器或电容器连接的电阻器组成。只有两种类型的低通滤波器,即电感式和电容式低通滤波器 [3,4]。电容滤波器是电阻器和电压源串联连接。电容器两端的阻抗与频率成反比关系,而电容器的阻抗会随着频率值的增加而减小 [5]。这意味着电容器对低频具有高电阻,从而阻止其通过电容器。它对高频信号的电阻也很低。高频信号将通过电容器,因为它对它的电阻很低,而电容器将拒绝低频信号。因此,它将通过输出电压。由于电容器的反应性,电容器倾向于将高频信号与低频信号分开 [6]。
总体产品性能评估 EDS 提供了一套全面且易于使用的可扩展功能,用于总体产品性能评估 — 从概念设计到原型评估。Unigraphics NX 和 I-deas 是 EDS 产品生命周期管理 (PLM) 解决方案的一部分 — 这是全球市场领先的技术和服务,用于在协作基础上执行产品生命周期管理。产品生命周期管理是扩展企业(由分散的用户和各种数据类型组成)通过虚拟产品开发环境有效规划、执行、监控和优化产品生命周期中所有阶段的能力 — 您可以在虚拟产品开发环境中构思、设计、设计和分析产品的数字 3D 模型以及制造、交付和支持这些产品所需的流程。
摘要 本文介绍的发动机监控和控制系统 (E-MACS) 显示器是一种概念验证产品,其设计理念侧重于提供比传统设计的显示器更直接面向用户任务的信息。E-MACS 显示器是一种全新的发动机仪表显示器概念,其目的是为飞行员提供一种增强的方法来控制和监控发动机性能。它以图形方式提供有关性能能力、当前性能以及相对于标称条件的发动机组件或子系统运行条件的信息。该概念是根据传统的、最先进的电子发动机显示格式进行评估的。16 名飞行员参加了此次评估。评估结果显示,与传统显示器相比,飞行员非常喜欢 E-MACS 显示器。评估的故障检测部分(通常称为“操作员错误”)的结果显示,E-MACS 显示器的检测率为 100%,而传统显示器的检测率为 57%。从这些结果可以得出结论,通过在驾驶舱中提供此类信息,可以减少飞行员的工作量并增强检测退化或非正常情况的能力,从而提高操作安全性。
• 虽然本课程本质上为基础性且与模拟工具无关,但了解 Ansys 复合模拟工具的广泛组合可以帮助您掌握这些基础知识并将其应用于模拟。
关于IIIT Bhagalpur印度信息技术研究所Bhagalpur(IIIT Bhagalpur)是国家重要性研究所,MOE(MOE早些时候),政府。在公私伙伴关系(PPP)模式下的印度。Bhagalpur是印度比哈尔邦恒河南岸的历史重要性城市,并被称为丝绸之城。该研究所正在积极探索在印度制造计划下开发国家所需的技术干预措施。在Pradip Kr教授的能力领导下,该研究所取得了显着的进步。Jain,研究所的荣誉主任。在电子和通信工程系中,M.Tech在VLSI和嵌入式系统,信号处理和机器学习,微波炉和通信系统以及通信系统,信号和图像处理,生物医学工程,VLSI和微型微电子,RF和微波工程,IOT和Microwave Engineers,Iot&Sensor,Iot&Sextors,人工智能,软计算,软计算中。
摘要 — 随着逆变器资源 (IBR) 集成度的提高,确保大容量电力系统的可靠运行需要使用电磁暂态 (EMT) 仿真工具来识别和减轻全系统稳定性风险。然而,对大规模、富含 IBR 的电网进行 EMT 研究具有挑战性,因为底层高保真模型和所需的小时间步骤造成了固有的计算瓶颈。本文介绍了 ParaEMT:一个开源的通用 EMT 仿真框架,旨在通过利用先进的并行计算技术(如高性能计算机)来加速仿真。本文全面阐述了 ParaEMT,涵盖了其建模库、仿真策略、框架结构、操作程序和辅助功能,以及其可扩展的并行计算架构。值得注意的是,ParaEMT 是一个用 Python 编写的可公开访问的模块化框架,从而促进了未来的开发和新模型和算法的集成。通过多个案例研究的严格验证证明了 ParaEMT 的准确性和效率。
表 1.1:先锋 RQ-2 规格 ...................................................................................... 3 表 2.1 飞机平移和旋转运动的 12 个状态 ........................................................ 6 表 2.2 先锋 Rpv 稳定性和系数 ........................................................................ 8 表 2.3:6DOF 机身四元数块端口描述 [6] ...................................................... 16 表 3.1 平飞条件下的配平参数 ............................................................................. 21 表 3.2 反馈增益值 ............................................................................................. 26 表 5.1 由于升降舵偏转和攻角引起的升力系数 ............................................................. 33 表 5.2 由于升降舵偏转和攻角引起的阻力系数 ............................................................. 34 表 5.3 由于方向舵偏转和侧滑角引起的侧向力系数 ............................................................. 35 表 5.4 由于副翼偏转和攻角 36 表 5.5 升降舵偏转和攻角引起的力矩系数 ...... 37 表 5.6 副翼偏转和攻角引起的偏航力矩系数 38 表 5.7 攻角引起的气动系数及导数 .......................... 39
本论文的主要目的是改进之前开发的缩比战斗机演示器的仿真模型。为了得到可靠的结果,仿真模型应该正确建模并使用准确的输入。为了实现这一目标,我们采取了两种方法,第一种方法是提供气动导数数据库,以便在仿真模型中实现,第二种方法是改进仿真模型的推进模块。气动数据库由几种 VLM 和面板方法软件生成,即 Tornado、VSPAero 和 XFLR5,它们使用缩比战斗机演示器通用未来战斗机 (GFF) 作为飞机模型。在将其实现到仿真模型之前,首先比较了不同方法和软件的结果。第二个过程包括增强推进模型和气动数据库的实现。推进模型增强包括推力建模的改进和燃料消耗模型的开发。此外,气动数据库的实现是通过将数据库的外部集自动连接到仿真模型来执行的。验证过程通过将仿真模型的结果与记录的飞行数据进行比较来进行,同时通过比较改进后的仿真模型和之前的仿真模型结果来查看改进的效果。使用改进的模型