* 通讯作者:saeed.aminzadeh1363@gmail.com 摘要:本文利用固体氧化物燃料电池 (SOFC) 和电池的无功功率之间的协调来控制孤岛微电网内的频率。通过这种协调,微电网频率调节在突发事件期间变得更快、更好。此外,孤岛微电网频率控制通常所需的储能容量已大大减少。此外,无需考虑可再生能源中的备用容量来进行频率控制。因此,可再生能源可以在其最大功率点运行。此外,本文还介绍了一种新的频率无功功率控制概念和一个相关系数,该系数显示了微电网频率对每个总线上注入的无功功率变化的依赖程度。该系数决定了安装无功功率控制装置以控制微电网频率的总线优先级。在 MATLAB/Simulink 环境中进行了仿真研究。结果表明了所提系数的适用性和准确性,证明了SOFC和电池之间的无功功率协调控制对频率控制的有效性。
摘要:底层电路控制是电动汽车混合储能系统(HESS)的关键问题。本文结合精确反馈线性化方法和滑模变结构控制技术,提出了一种复合非线性控制策略(CNC),用于全主动HESS的电流/电压的精确跟踪。首先,通过分析HESS的电路特点,推导了全主动HESS的仿射非线性模型。然后,设计基于规则的能量管理策略(EMS)来生成参考电流值。最后,采用精确反馈线性化方法对HESS进行线性化,并结合滑模变结构控制技术开发了所提出的CNC策略,以确保快速响应、高性能和鲁棒性。同时,给出了基于Lyapunov方法的稳定性证明。此外,深入研究了CNC策略的性能,并与传统PI控制和改进的滑模控制进行了仿真研究,充分验证了其在不同驾驶条件下的有效性。
摘要 — 锂离子电池储能系统 (BESS) 凭借其当前的技术和经济成熟度,在满足智能电网环境中的短期灵活性要求方面具有巨大潜力。然而,必须详细建模非线性电池系统特性的复杂性及其相邻电力电子接口的控制。更详细和准确的组件建模,通过同时考虑组件和系统级方面,可以改进整个电力系统优化研究。因此,本文开发了锂离子电池的等效电路模型 (ECM),并将锂离子镍锰钴 (NMC) 电池单元建模为二阶等效电路 (SOEC),包括 C 速率、温度、充电状态和老化效应。其次,开发了 DC/DC 和 DC/AC 转换器接口的详细控制器设计方法,以实现高级电网集成研究。总体而言,BESS 集成设计通过 Simulink Simpowersystems 平台中的仿真研究得到验证。
摘要:辐射冷却涂层由于其出色的冷却性能和能源效率而被广泛使用。但是,缺乏对他们的天气抵抗力,长期性能以及对建筑物负荷的影响的全面研究。为了填补这一研究空白,选择了7种涂层进行实验观察和仿真研究。结果表明,不同涂层之间在抗衰老特性,冷却性能和减少建筑物负载方面存在明显差异。一些涂层在风化测试后表现出泛黄,破裂和剥离,并伴随着其辐射特性的下降。长期测试表明,由于自然衰老,所有涂层的冷却性能逐渐下降,并且下降速度与涂料的风化成正比。建筑物负载模拟揭示了涂料选择对冷却和加热负荷的潜在影响,从而表明应根据不同气候区域中的实际使用情况选择不同的涂层。
摘要:太阳能电池板中电子组件的有效冷却对于优化其性能和寿命至关重要。这项研究研究了相变材料(PCM),尤其是纳米复合材料的利用,以增强太阳能电池板中的电子冷却。纳米复合PCM具有独特的热性能和可扩展性,使其成为降低温度波动并提高整体系统效率的有吸引力的候选者。通过实验验证和仿真研究,本研究探讨了太阳能电池板中基于纳米复合PCM的冷却系统的设计,集成和优化。在提高电子组件的可靠性,提高能量产量和延长系统寿命方面,该方法的有效性得到了证明。这项研究通过提供了利用创新的PCM解决方案用于电子冷却应用的洞察力,从而有助于太阳能电池板技术的发展。
摘要:本文对不同的储能系统 (ESS) 在为基于电力电子的电解系统提供低电压穿越 (LVRT) 支持方面进行了全面的技术经济分析。开发了一个用于分析电网集成电解器-ESS 系统性能的框架,其中考虑了现实场景和精确的模型。系统组件包括一个集成中压电网的 500 kW 碱性电解器模块和三种不同的商用 ESS,分别基于锂离子电池、锂离子电容器和超级电容器技术。针对三种 LVRT 曲线对这些 ESS 的性能进行了广泛的研究,主要关注即将出台的丹麦电网规范。为了进行仿真研究,该系统在 MATLAB ® /Simulink ® -PLECS ® 平台上实现。结果表明,这三种储能技术都能够在配电网出现低压异常时支持电解器系统。研究还表明,从技术经济角度来看,基于超级电容器的技术似乎更适合故障穿越(FRT)合规性。
摘要:本文将新颖的 LPV(线性参数变化)模型和 MPC(模型预测控制)方法应用于电动垂直起降飞机的倾斜过渡过程,该飞机具有六个分布式电动旋翼和固定翼,用于平飞,其中两个旋翼可倾斜以在从悬停到稳态平飞的倾斜过渡期间产生可变推力矢量,其余四个旋翼不能倾斜。在平飞过程中,固定翼引起的气动升力保持飞行高度。基于由倾转旋翼角位置和故障旋翼速度预定的标称倾斜轨迹,通过沿倾斜轨迹线性化非线性 eVTOL 飞机模型,基于显著减少的线性时不变模型数量构建了离散时间 LPV 模型,其中倾转旋翼角度和故障旋翼速度可以实时测量。提出了一种基于σ移位H 2 范数的LPV建模误差评估方法,并设计了具有动态参考补偿的自适应模型预测控制器。仿真研究表明,基于转子故障倾斜过渡LPV模型的自适应MPC策略是成功的。
摘要:在这项工作中,我们设计和模拟了具有电荷平衡漂移层的高性能垂直功率MOSFET,这调节了从超级二次到线性的RON-BV关系。所提出的设备是使用超级接线漂移层设计的,该层调节了从超级二次到线性的RON -BV关系。所提出的设备具有从超级接线漂移层隔离的源和通道区域。与Balliga的功绩相比,与其他常规设备相比,该设备的性能显着改善。一项2D TCAD仿真研究表明,外延层厚度为50μm的拟议装置显示,电阻为3.84MΩ.cm2,分解电压为833V,这是以前文献中在此故障电压下在先前文献中报告的电阻最低的电压。此外,还完成了电荷不平衡和电容分析的研究,包括计算门电荷。Balliga为所提出的结构的所有漂移厚度计算的Balliga值(FOM)的值显着超过了迄今为止报道的常规超级连接结构。
摘要:上肢康复中机器人系统的利用已显示出令人鼓舞的结果,以帮助有运动障碍的人。这项研究引入了一种创新的方法,通过开发优化的刺激控制系统(OSCS)来提高上肢外骨骼外骨骼辅助康复的效率和适应性。所提出的OSC集成了一种基于模糊的逻辑检测方法,旨在准确评估和应对康复期间患者的疼痛阈值。通过采用模糊逻辑算法,系统会动态调整外骨骼的刺激水平和控制参数,以确保个性化和优化的康复协议。这项研究进行了全面的评估,包括仿真研究和临床试验,以验证OSCS在改善康复结果中的功效,同时优先考虑患者的舒适性和安全性。这些发现证明了OSC通过提供针对个人患者需求的可定制和适应性框架来革新上肢外骨骼辅助康复的潜力,从而促进了机器人辅助康复领域的发展。
摘要:移动通信网络的发展是由快速技术进步驱动的,尤其是在人工智能(AI)和机器学习(ML)中。本文提供了对通信网络中AI和ML集成的全面概述。研究着重于粒子群优化(PSO),无线网络(ADWIN)中的异常检测以及自动回应(AR)模型,以提高预测准确性和网络效率。通过对移动通信中AI应用的现有文献和仿真研究收集数据。关键结果突出了使用混合智能技术的网络预测准确性的提高,并具有在异常检测和通信优化方面的显着应用。本文以对AI驱动的通信技术进行进一步研究的建议结束,并提出了增强长期预测模型的框架,以提高预测准确性和降低连接故障的方法。关键字:无线网络中的异常检测,人工智能,自动回归模型,长期预测准确性,机器学习,随机优化算法。