摘要: - 自2023年4月以来,在苏丹微风的不公平战争期间,苏丹国家电网(SNG)发生了大能源短缺。电源分销公司未能提供可持续能源的居住和商业消费者的要求。白天和黑夜的电源中断对于住宅和商业订户来说是头痛。由于对热产生的依赖,在战争时期,优先级是食品,因此进口炉的进口停止,这导致了一代人的明显短缺。近年来,由于友好的环境和气候增强,可再生能源已变得非常重要。除此之外,可靠的能源供应需要紧急。像太阳这样的巨大能源有助于提供可持续和经济供应。气候干燥,因此它获得了大量的太阳能。收到约4.97kWh /𝒎 /天的平均太阳能。其他类型的可再生能力(例如风能)也可用于建设。PV Syst,PV-GIS和MATLAB是适用于该项目的仿真软件。
ece 201电路分析I(3个学时)线性电路分析和理论的简介。主题包括:被动组件定义和连接规则;独立和依赖的来源,权力和能源的概念;基尔乔夫的法律;开发网络减少技术;网格电流和节点电压方程的公式;网络定理包括Thevenin,Norton,最大功率传递和叠加定理,操作放大器,储能元素和初始条件。一阶和二阶电路的时间域分析,介绍性。矩阵和线性代数的基础知识以及高斯消除;线性电路分析的矩阵应用; MATLAB和电路仿真软件(MultiSim),并对被动电路进行分析和应用。(提供的秋季,春季,夏季)先决条件:ECE 111或同等学位,C级C或更高的数学级别212预先或原则:Phys 232n或Phys 262n
制动系统是高速车辆的基本安全部件,在极端条件下的性能至关重要。本文比较了两种先进的制动系统:采用碳纳米管 (CNT) 增强复合材料的盘式制动器和采用铝-石墨烯纳米复合材料的电磁制动器。该研究利用 ANSYS 仿真软件和实验测试来评估这两个系统的热稳定性、耐磨性、应力、应变、变形和机械强度。我们的研究结果表明,与传统的碳陶瓷材料相比,CNT 增强复合材料在高制动温度下表现出优异的热稳定性和抗变形性。在电磁制动系统中,与 Al 6061 相比,铝-石墨烯纳米复合材料表现出显着改善的机械性能和减少的磨损。该分析表明,这些先进材料可显着改善制动性能,为提高高速车辆制动系统的安全性和效率提供了有希望的途径。
在自主系统的背景下开发工具[22,24],例如自动驾驶汽车(SDC),这是耗时且昂贵的,因为研究人员和从业人员依靠昂贵的计算计算硬件和仿真软件。我们提出了Sensodat,这是一个由32,580个执行基于仿真的SDC测试用例的数据集,该测试案例用SDC的最新测试发电机生成。数据集由轨迹日志和来自SDC的各种传感器数据组成(例如,RPM,车轮速度,制动热,传输等)表示为时间序列。总共Sensodat提供了来自81个不同模拟传感器的数据。在使用Sensodat时,SDC领域的未来研究不一定取决于执行昂贵的测试用例。此外,使用传感器数据的量和变化,我们认为Sensodat可以有助于研究,特别是对于AI开发,用于基于模拟的SDC测试的回归测试技术,模拟中的片段等。链接到数据集:https://doi.org/10.5281/zenodo.10307479
本论文展示了机器学习的一种应用,它为在复杂战术情况下操作激光武器系统的战士提供自动决策支持。该论文使用 NPS 建模虚拟环境与仿真 (MOVES) 研究所的 Swarm Commander 建模和仿真软件环境来开发模拟数据集,模拟涉及舰载激光武器系统防御无人机群威胁的战争游戏场景。模拟数据集用于训练机器学习算法,以预测复杂战场中异构无人机群的最佳交战策略。评估了多种机器学习技术,并选择分类树技术作为首选方法。最终算法在根据无人机威胁类型、数量和激光武器系统攻击策略正确预测交战结果方面总体准确率为 96%。研究结果表明:(1)建模和仿真对于支持战术机器学习应用开发的实用性;(2)机器学习对支持未来战术行动的潜力;(3)机器学习和自动化总体上可以减轻未来作战人员在复杂威胁环境中做出关键决策时的认知负荷。
摘要:在大规模的定向能量沉积加成制造(DEDAM)为海上应用中使用镍铝青铜(NAB)合金的兴趣增加了,但一个挑战在于组成失真,这是由于制造过程中产生的残余应力而产生的。本文介绍了NAB激光热线(LHW)DEDAM的热机械模拟的开发和评估,以预测部分变形。在开放文献和公共数据库中,使用了NAB C95800的温度依赖性特性的缺乏,使用用各种DEDAM过程制造的测试样品测量了NAB C95800的温度依赖性材料和机械性能。Autodesk的NetFabb本地仿真软件是一种基于商业的元素AM求解器,但已使用其热源模型进行了修改,以适应LHW Dedam的振荡激光路径和预热的线原料提供的额外能量输入。热机械模拟。与使用温度依赖性性质的恒定特性在热机械分析中的使用导致明显不同的预测失真,甚至有时甚至可以预测沿相反方向的底物位移。
1简介全球汽车塑料市场的价值为2022年295亿美元。预计在2023年至2030年之间,它将以com磅的年度增长率(CAGR)为5%。低到中端乘用车占6%至10%的塑料,总重量超过110-120千克。减轻车辆的重量并增加对排放控制的关注是提高高性能塑料市场增长的关键因素。在制造技术方面,注射成型占2022年所有流程中56%以上的最大份额,但就处理的原材料,聚丙烯(PP)而言,其可回收版本及其回收版本以32%的份额为汽车塑料市场[1]。设计人员使用仿真软件通过使用肋骨在设计阶段在关键方向上增加零件的惯性,而肋骨是宏观区域中构成的表面特征。根据标准[2,3],B。Sha等人,微观结构的定义也用于聚合物技术中。在他们的研究中称微结构为200 µm以下的表面积单位[4]。这些结构,除了具有美学目的外,还要使用产品的机械性能。在这种情况下,
实现综合能源系统(IES)低碳和经济调度以及可再生能源利用,综合能源系统经济调度模型引入了液态二氧化碳能量存储(LCES)和碳捕获系统(CCS)。本文为考虑LCE和碳捕获系统的综合能源系统提出了一个低碳经济调度模型。本文考虑了碳交易机制对系统性碳排放的影响,旨在最大程度地降低系统的总运行成本,并比较两种情况下的集成能源系统调度:配备了LCE的集成能源系统和配备了电池能量存储的集成能源系统。cplex仿真软件模拟了这个综合的能源系统。从不同角度分析调度的结果,例如电能,热能和CO 2排放。这些结果表明,提出的模型有效地减少了碳排放,改善了能源利用,并实现了综合能源系统的全面低碳经济运作。
摘要:相变材料 (PCM) 已成为潜热热能存储 (LHTES) 系统的有前途的解决方案,为在各种工程应用中存储来自可再生能源的能源提供了巨大的潜力。本研究重点是通过将 LHTES 与不同的 PCM 罐配置集成来优化太阳能冷却系统。研究选择了 TRNSYS 仿真软件,并使用从实验室系统原型收集的实验数据进行系统验证。结果表明,使用 PCM 可显著降低 6.2% 的辅助能耗。此外,与不使用 PCM 相比,使用 PCM 时,从储罐到辅助流体加热器的热载体温度流超过 90 ◦ C 的时间延长了 27.8%。在多变的天气条件下,在 LHTES 中使用 PCM 更有效。在观察到天气条件变化的那一天,大约 98% 的冷却负荷是由产生的太阳能提供的。研究结果可用于优化太阳能冷却系统,这将有助于减少使用不可再生燃料的冷却系统对环境的影响。
本工作着重于评估整合到太阳能辅助区供暖系统(SDHS)中的热泵的技术经济益处。该系统是使用动态仿真软件(TRNSYS)开发的,并根据遗传算法进行了优化。使用工业大小的热泵连接到家庭热水(DHW)和空间供暖(SH)的热储罐,以满足社区的要求,SDHS通过基于其参考工作温度应用两个不同的控制机制来操作SDHS。该方法的应用适用于位于马德里的10座建筑物的重新确定社区社区,以充当地中海气候的代理。结果在技术经济益处中显示了热泵控制的显着影响,在此,建议的系统能够提供高达99%的太阳比例。此外,在最佳情况和最坏情况下,加热系统的总电量差异为10%。此外,年度季节性存储效率提高了90%,生命周期费用高达67.12欧元/MWH,回报期为29年。