在过去的几十年中,数字和模拟集成电路的集成密度和性能经历了一场惊人的革命。虽然创新的电路和系统设计可以解释这些性能提升的部分原因,但技术一直是主要驱动力。本课程将研究促成集成电路革命的基本微制造工艺技术,并研究新技术。目标是首先传授构建微型和纳米器件的方法和工艺的实际知识,然后教授将这些方法组合成可产生任意器件的工艺序列的方法。虽然本课程的重点是晶体管器件,但许多要教授的方法也适用于 MEMS 和其他微型器件。本课程专为对硅 VLSI 芯片制造的物理基础和实用方法或技术对器件和电路设计的影响感兴趣的学生而设计。30260133 电子学基础 3 学分 48 学时
2024 年 6 月 1 日——多重编辑工具箱,包括专有的 CRISPR-CasS 和其他编辑工具,是目前使用最广泛的工具箱,可实现多种基因编辑。
克里希纳·沃恩·谢诺伊是我们认识的最有同情心的人。他必定会因其科学影响而被人们铭记,但他非凡的善良和对他人的奉献精神也将成为他遗产的永久部分。他可以通过五分钟的互动来触动一个人的生活,更不用说长达十年的师生关系了。我们从克里希纳身上学到的东西让我们成为更好的科学家,更重要的是,让我们成为更好的人。克里希纳在与胰腺癌长期斗争后于 2023 年 1 月 21 日去世,享年 54 岁。他于 2011 年首次被诊断出患有胰腺癌,最终在确诊近 12 年后去世。我们开始认为他是无敌的。在患病期间,克里希纳继续带着目标感、玩乐和惊奇感生活。在他 54 年的人生岁月中,他尽可能地融入了生活、关怀和工作。克里希纳的科学遗产大致可分为两类:对帮助瘫痪患者的脑机接口 (BCI) 系统的贡献,以及对我们关于大脑如何控制运动的基础科学理解的贡献。我们在这里对他的科学遗产的讨论集中在前者。对克里希纳的其他致敬将集中在后者。从克里希纳的榜样中可以学到的教训和值得珍惜的故事比任何一篇短文都多得多,但我们希望与那些不认识他的人分享他给科学和指导带来的魔力和快乐。
通过传统育种将新特性引入作物通常需要几十年的时间,但最近开发的基因组序列修饰技术有可能加速这一过程。这些新育种技术之一依赖于 RNA 指导的 DNA 核酸酶 (CRISPR/Cas9) 在体内切割基因组 DNA,以促进序列的删除或插入。这种序列特异性靶向由向导 RNA (gRNA) 决定。然而,选择最佳 gRNA 序列有其挑战。几乎所有当前用于植物的 gRNA 设计工具都是基于动物实验数据,尽管许多工具允许使用植物基因组来识别潜在的脱靶位点。在这里,我们检查了八种不同的在线 gRNA 位点工具的预测一致性和性能。不幸的是,不同算法的排名之间几乎没有共识,排名与体内有效性之间也没有统计学上显着的相关性。这表明,影响植物中 gRNA 性能和/或靶位点可及性的重要因素尚未阐明并纳入 gRNA 位点预测工具中。
(!“#$”%&'%()#'*+),“ - +。“#+”)#/ 0“ 1)%$ 2”#$'&345*。+*,3“ ##*5,6)#。) div>- $)$“ 7#.6”%*。
如果没有我们的基金会合作伙伴,这一切都不可能实现。他们像 Tūpuna Pono 一样,怀揣着巨大的信心,建立了新西兰首个蓝色经济集群。感谢 Scott Gillanders(MacLab NZ)、Helen Palmer(新西兰植物与食品研究所)、Volker Kuntzsch(Cawthron 研究所)、Fiona Wilson(尼尔森地区发展署)、Paul Miller(Kernohan 工程公司)、Hugh Morrison(纳尔逊港)、Grant Wilson(Pharmalink Extracts)、Doug Paulin(Sealord)和 Meg Matthews(Wakatu 公司)的远见、领导力和投资,让这个想法变成了现实。
腐蚀抑制剂及其原材料可能有毒,因此,在使用这些潜在危险材料时应始终保持谨慎。最终确定任何信息或产品是否适合任何用户使用以及使用方式均由用户自行负责。我们强烈建议用户寻求并遵守制造商或供应商的当前说明,以处理他们使用的每种材料。
Inari 是一家 SEEDesign™ 公司,利用新育种技术突破可能性的界限,设计出对自然有益的种子,以实现更可持续的粮食系统。人工智能预测设计和开创性的多重基因编辑工具箱相结合,使 Inari 能够充分发挥种子的潜力,并推进关键解决方案,这些解决方案具有广泛的应用,可以用更少的资源种植更多的粮食。这些产品将成倍地提高产量,同时减少对土地、水和氮使用的环境影响——在为整个价值链创造价值的同时,对自然产生积极影响,从农民开始。