登革热 (DENV) 病毒和基孔肯雅 (CHIKV) 病毒是最常见的虫媒病毒。虽然白纹伊蚊和马来伊蚊主要通过埃及伊蚊叮咬传播,但它们也是有效的媒介,并对虫媒病毒流行病学产生影响。在这里,为了填补我们对次级载体和虫媒病毒之间分子相互作用的理解空白,我们使用转录组学分析了感染后 1 天和 4 天 (dpi) 时白纹伊蚊对 CHIKV 以及马来伊蚊对 CHIKV 和 DENV 的全基因组反应。在白纹伊蚊中,1793 个和 339 个基因分别在 1 dpi 和 4 dpi 时受到 CHIKV 的显著调控。在 A. malayensis 中,在 CHIKV 感染时有 943 个和 222 个基因在 1 dpi 和 4 dpi 时显著受调控,在 DENV 感染时有 74 个和 69 个基因在 4 dpi 时显著受调控。我们报告了 81 个基因在所有 CHIKV 感染条件下持续差异调节,确定了 CHIKV 诱导的特征。我们使用从头组装的 A. malayensis 中肠转录组,确定了两种蚊子中表达的免疫基因,并描述了免疫结构。我们发现 JNK 通路在所有条件下都被激活,将其抗病毒功能推广到伊蚊。我们的全面研究为多种伊蚊媒介传播虫媒病毒提供了见解。
成年蚊子需要定期进食糖类食物,包括花蜜,才能在自然栖息地生存。雄性和雌性蚊子都利用一种叫做嗅觉受体 (OR) 的感觉蛋白来定位潜在的糖源,这种受体被植物挥发物激活,从而定位到花朵或蜜露。黄热病蚊子埃及伊蚊 (Linnaeus, 1762) 拥有一个庞大的嗅觉受体基因家族,其中许多基因家族可能能够检测花香。在这项研究中,我们使用一组与环境相关的植物来源的挥发性化学物质和异源表达系统,发现了埃及伊蚊一组嗅觉受体的配体-受体配对。我们的研究结果支持以下假设:这些气味介导蚊子中枢神经系统对花香的感觉反应,从而影响食欲或厌恶行为。此外,这些嗅觉受体在其他蚊子中保存良好,表明它们在不同物种中发挥着类似的功能。这些信息可用于评估蚊子的觅食行为并制定新的控制策略,特别是结合蚊子诱杀技术的策略。
伊蚊会将包括黄病毒在内的多种病原体传播给人类,导致高发病率和死亡率。由于适应性和气候变化,这些蚊媒预计将在新的地理区域定居,从而使更多的蚊子面临感染风险。因此,控制伊蚊媒介对于防止疾病传播是必要的。最近,遗传学方法在媒介控制方面显示出良好的前景;然而,操纵蚊子基因组的工具和方法相当有限。虽然 CRISPR-Cas9 系统已被用于伊蚊的基因编辑目的,但基于 dCas9 的基因转录控制仍未得到探索。在本研究中,我们报告了 CRISPR 激活系统在伊蚊细胞中的实施。为此,我们设计、构建和测试了一种基于双质粒的策略,该策略允许表达 dCas9-VPR 和靶向向导 RNA 以及报告基因盒。荧光报告基因水平的定量分析显示了强大的过表达,验证了伊蚊细胞中的 CRISPR 激活。该策略和生物学部分将成为基于合成转录因子的伊蚊基因强劲上调的有用资源,以应用合成生物学方法进行媒介控制。
与物理和化学合成相比,使用绿色还原提取物进行 ZnONPs 生物合成是一种简便、环保的方法。本研究首次利用薰衣草叶提取物合成 ZnONPs。采用紫外-可见光谱、PXRD、FESEM、EDAX 和 FTIR 等技术对 ZnONPs 进行表征。将 ZnONPs 以 80mg/L 至 160mg/L 的剂量依赖性方式暴露于登革热病原体白纹伊蚊 24 小时。在 346 nm 处发现紫外-可见吸收峰,证实了 ZnONPs 的生物合成。FESEM 结果表明,ZnONPs 以截角八面体形态的聚集体形式形成。平均粒径为 74.58 nm。 PXRD 分析表明 ZnONPs 本质上是结晶的。FTIR 分析表明,酚类、醇类和胺类等不同的功能基团参与了 ZnONPs 的合成。ZnONPs 在用 A. albopictus 的四龄幼虫处理后表现出显著的杀蚊幼虫活性。暴露 24 小时后,ZnONPs 在浓度为 160mg/L 时表现出 100% 的死亡率,LC50 值为 118mg/L,LC90 值为 135mg/L。基于这些结果,我们强烈建议将截角八面体形状的 L. angustifolia ZnONPs 用作对抗蚊媒疾病和害虫管理的强效生物医学药剂。
埃及伊蚊是多种病毒的主要载体,包括登革热病毒、基孔肯雅病毒和寨卡病毒。蚊媒疾病的经济负担、传统控制策略的相对失败以及对杀虫剂的抗药性发展,都促使人们开始对埃及伊蚊进行基因改造。因此,一个关键的双性基因 ( Aedsx ) 调节性别分化,并交替剪接形成雄性和雌性特异性转录本 ( Aedsx M 和 Aedsx F )。CRISPR/Cas9 技术被用于性别特异性破坏雌性特异性亚型 Aedsx F1 和 Aedsx F2 ,这两种亚型均仅在雌性蚊子中表达。在发育阶段以 dsx F 为靶标已导致成年雌性出现各种表型异常。 dsx F1 和 dsx F2 微注射组中记录到成年突变表型的发生率在 29% 到 37% 之间,同时翅膀大小和喙长异常,进食前和进食后卵巢尺寸减小。这些发现与 G o 雌性繁殖力降低有关,其中 Aedsx F1 和 Aedsx F2 组的繁殖力降低率在 23% 到 31% 之间。此外,与野生型相比,G1 代的孵化抑制率为 28% 到 36%。总体而言,这些结果表明 Aedsx F 破坏已导致多种雌性性状破坏,包括雌性生育力下降,这可能直接或间接与生殖及其疾病传播能力有关。所有这些发现都表明 CRISPR 能够按照预期改变发育途径,因此这种方法可能为我们提供了性别比例失调系统作为管理该载体的遗传控制方法的基础。2022 作者。由 Elsevier BV 代表沙特国王大学出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。