我们研究了 Lindblad 主方程形式中具有相位耗散的量子 Ising 链中的纠缠动力学。我们考虑了两种保留状态高斯形式的解构,使我们能够处理大型系统。第一个解构产生了量子态扩散动力学,而第二个解构描述了一种特定形式的量子跳跃演化,适合构建以保留高斯性。在第一种情况下,我们发现了从面积律到对数律纠缠缩放的交叉,并绘制了相关的相图。在第二种情况下,我们只发现了对数律缩放,并指出了同一 Lindblad 方程的不同解构的不同纠缠行为。最后,我们将这些结果与非厄米汉密尔顿演化的预测进行比较,发现了相互矛盾的结果。
这些笔记是为想要开始研究量子伊辛链的学生准备的,也可作为研究人员进入该领域的实用指南。遗憾的是,我们没有充分考虑到首次引入或推导概念和技术的大量文献,更不用说介绍物理应用的众多论文了。我们提前为没有适当引用其作品的作者道歉。但是,大多数主题都包括详细的推导,这应该可以使这些笔记具有相当的独立性。我们的介绍水平大致适合研究生,但硕士生也应该能够跟上大多数的发展,只要他们掌握必要的先决条件:处理玻色子和费米子的二次量子化 [1],以及自旋-1/2 量子力学的基本知识 [63]。
第一章区块链技术概述 1. 人工智能AI,区块链Blockchain,云计算Cloud 和数据科学Data Science。 人工智能:生产力变革。大数据:生产资料变革。区块链:生产关系变革。 2. 可信第三方: 交易验证,交易安全保障,历史记录保存->价格昂贵,交易速 度嘛,欺诈行为。 区块链: 去中心的清算,分布式的记账,离散化的支付。任 何达成一致的无信任双方直接交易,不需要第三方中介。注意:信用破产,绝 对中心化,不透明无监管。 3. 区块链: 用于记录比特币交易账目历史的数据结构,每个区块的基本组成都 由上个区块的散列值、若干条交易及一个调节数等元素构成,矿工通过工作量 证明来维持持续增长、不可篡改的数据信息。区块链又称为分布式账本,是一 种去中心化的分布式数据库。 区块链技术 是在不完全可信的环境中,通过构建 点对点网络,利用链式数据结构来验证与存储数据,借助分布式共识机制来确 定区块链结构,利用密码学的方式保证数据传输和访问的安全,利用由自动化 脚本代码组成的智能合约来编程和操作数据。 4. 体系结构:数据层: 封装了区块链的底层数据存储和加密技术。每个节点存 储的本地区块链副本可以被看成三个级别的分层数据结构:区块链、区块、区 块体。每个级别需要不同的加密功能来保证数据的完整性和真实性。 网络层: 网格网络,权限对等、数据公开,数据分布式、高冗余存储vs 轴辐网络,中央 服务器分配权限,多点备份、中心化管理。 共识层: 能够在决策权高度分散的 去中心化系统中使得各节点高效地针对区块数据的有效性达成共识。出块节点 选举机制和主链共识共同保证了区块链数据的正确性和一致性,从而为分布式 环境中的不可信主体间建立信任关系提供技术支撑。 激励层: 经济因素集成到 区块链技术体系中,包括经济激励的发行机制和分配机制等。公有链:激励遵 守规则参与记账的节点,惩罚不遵守规则的节点,使得节点最大化自身收益的 个体理性行为与保障去中心化的区块链系统的安全和有效性的整体目标相吻合, 整个系统朝着良性循环的方向发展。私有链:不一定激励,参与记账的节点链 外完成博弈,通过强制力或自愿参与记账。 合约层: 封装区块链系统的各类脚 本代码、算法以及由此生成的更为复杂的智能合约。数据、网络和共识三个层 次作为区块链底层“虚拟机”分别承担数据表示和存储、数据传播和数据验证功能, 合约层建立在区块链虚拟机之上的商业逻辑和算法,是实现区块链系统灵活编 程和操作数据的基础。智能合约是一个在计算机系统上,当一定条件被满足的 情况下,可以被自动执行的合约(程序)区块链上的智能合约,一是数据无法 删除、修改,保证了历史的可追溯,作恶成本很高,其作恶行为将被永远记录; 二是去中心化,避免了中心化因素的影响。 应用层: 区块链技术是具有普适性 的底层技术框架,除可以应用于数字加密货币外,在经济、金融和社会系统中 也存在广泛的应用场景。 5. 区块链特征 :去中心,去信任;开放,共识;交易透明,双方匿名;不可篡 改,可追溯。 区块链分类: 公有链: 无官方组织及管理机构,无中心服务器, 参与的节点按照系统规则自由接入网络、不受控制,节点间基于共识机制开展 工作。 联盟链: 由若干机构联合发起,介于公有链和私有链之间,兼具部分去 中心化的特性。 私有链: 建立在某个组织内部,系统的运作规则根据组织要求 设定,修改甚至是读取权限仅限于少数节点,同时仍保留着区块链的真实性和 部分去中心化特征。 无许可区块链: 一种完全去中心化的分布式账本技术,允 许节点自由加入和退出,无需通过中心节点注册、认证和授权,节点地位平等, 共享整个账本。 许可区块链: 存在一个或多个具有较高权限的节点,可以是可 信第三方,也可以是协商制定有关规则,其他节点只有经过相应授权后才可访 问数据,参与维护。 6. 数字货币:区块链1.0 旨在解决交易速度、挖矿公平性、能源消耗、共识方 式以及交易匿名等问题,参照物为比特币(BTC)。区块链2.0 旨在解决数据隐 私、数据存储、区块链治理、高吞吐量、域名解析、合约形式化验证等问题, 参照物为以太坊(ETH)。
将这些技术应用于辽宁省的疾病预防控制实践。【关键词】疾病预防控制;数据中心;健康服务;健康信息;区块链;星际文件系统;人工智能;安全沙箱
量子临界系统因其对扰动的固有敏感性而成为探索新测量诱导现象的有吸引力的平台。我们使用显式协议研究测量对典型 Ising 量子临界链的影响,其中关联的辅助粒子与临界链纠缠,然后进行投影测量。使用由大量数值模拟支持的微扰分析框架,我们证明测量可以定性地改变临界相关性,其方式取决于纠缠门的选择、辅助测量基础、测量结果和辅助相关性的性质。我们进一步表明,通过后选择高概率测量结果,或者在某些情况下,通过对位于不同对称扇区的测量结果分别平均可观测量,可以在具有 100 阶量子比特的实验中以令人惊讶的速度高效地实现测量改变的 Ising 临界性。我们的框架自然适应更奇特的量子临界点,并突出了在嘈杂的中尺度量子硬件和里德伯阵列中实现的机会。
耦合参数谐振器(参数器)网络有望成为并行计算架构。在实现复杂网络的过程中,我们报告了两个耦合参数器的实验和理论分析。与以前的研究不同,我们探讨了参数器之间强双线性耦合的情况,以及失谐的作用。我们表明,即使需要仔细校准以确保有正确的解空间,系统仍可在此状态下作为 Ising 机运行。除了形成分裂正常模式外,还会产生新的混合对称状态。此外,我们预测具有 N > 2 个参数器的系统将经历多个相变,然后才能达到与 Ising 问题等同的状态。
[摘要]长的非编码RNA(LNCRNA)是由200多个核苷酸构成的RNA分子,表现出相对较低的序列保护。很长一段时间以来,它们被视为“转录噪声”,即在生物领域中的非功能性RNA分子。近年来,随着研究的进步,科学家们在lncrnas中揭示了许多小型开放式阅读框(SORF),其中一些可以编码微肽。这些微肽已被证实参与了各种细胞过程和基因表达调节网络,扮演着至关重要的作用。这一发现为进一步探索生活活动以及临床诊断和疾病治疗的新研究方向开辟了新的研究方向。本综述总结了LNCRNA编码的菌根在病理和生理过程中的作用,微肽的亚细胞定位和功能机制以及微肽研究方法的进展,旨在为新型积分基于磨性的诊断诊断和治疗方法提供洞察力和参考。[关键词]长的非编码RNA;小开放阅读框;微肽;肿瘤
1 巴塞罗那 Neuroelectrics,西班牙巴塞罗那,2 巴塞罗那 Starlab,西班牙巴塞罗那,3 哈斯金斯实验室,美国康涅狄格州纽黑文,4 萨塞克斯大学信息学系,英国布莱顿,5 伦敦帝国理工学院迷幻药研究中心(脑科学系),英国伦敦,6 伦敦帝国理工学院复杂性科学中心,英国伦敦,7 牛津大学幸福与人类繁荣中心,英国牛津,8 卡罗琳克萨研究所分子医学中心算法动力学实验室,瑞典斯德哥尔摩,9 卡罗琳克萨研究所肿瘤学和病理学系,瑞典斯德哥尔摩,10 庞培法布拉大学脑与认知中心(信息与通信技术系)计算神经科学组,西班牙巴塞罗那,11 牛津大学精神病学系,英国牛津,12丹麦奥胡斯大学临床医学系大脑音乐中心,13 美国加利福尼亚州旧金山加利福尼亚大学迷幻药分部 - Neuroscape,14 西班牙巴塞罗那庞贝法布拉大学加泰罗尼亚高等研究院 (ICREA),15 德国莱比锡马克斯普朗克人类认知与脑科学研究所神经心理学系,16 澳大利亚墨尔本莫纳什大学心理科学学院
随着量子器件和量子算法的发展,量子计算机可以解决经典计算机难以解决的问题。量子计算机已经成功应用于量子化学、凝聚态物理和格子场论等许多领域(例如参见参考文献 [ 1 – 7 ])。随着量子比特数量的增加和量子器件保真度的提高,我们可以处理更现实的物理模型,探索量子计算机的潜力。作为一个应用示例,本文用量子算法在不同温度下准备 Ising 模型的热态,包括接近临界温度和低温区域的点。为了证明我们方法的可行性,我们将所选物理量的量子模拟结果与经典模拟结果进行了比较。已经提出了许多算法来使量子计算机能够准备热态。这些方法包括量子热动力学方法,其中目标系统与处于平衡状态的溶液耦合 [8];基于热场双态的变分量子算法 [9,10];以及许多量子虚时间演化 (QITE) 算法,例如利用 Hubbard-Stratonovich 变换的算法 [11]、基于变分假设的 QITE (QITE-ansatz) [12]、基于测量的 QITE (QITE-measure) [13],以及通过执行坐标优化的 QITE [14]。我们的研究范围集中在有噪声的中尺度量子 (NISQ) 设备的使用 [15,16]。考虑到量子
经典和量子相变中出现的临界现象因其实验相关性和理论意义而备受关注[2,3]。许多临界现象被认为可以用共形场论(CFT)来描述,这些场论具有强相互作用,对二维(即 1 + 1D)以上更高时空维度的研究提出了挑战。最近,一种称为模糊(非交换)球面正则化 [1] 的方法被发明来研究由圆柱几何上的 3D CFT 控制的 3D(即 2 + 1D)临界现象,表示为 S 2 × R 。与传统的格点正则化相比,模糊球面正则化在三维 CFT 的研究中具有许多优势,这主要归功于它在 S 2 × R 中利用了径向量化[ 4 , 5 ]以及精确保存了球面 SO ( 3 ) 对称性[ 6 , 7 ],这一点最近已被令人信服地证明[ 1 , 8 – 11 ]。首先,模糊球面可以直接获取有关临界状态下出现的共形对称性的信息[ 1 , 10 ]。其次,它可以直接提取 CFT 的各种数据,包括共形主算子的众多缩放维度[ 1 , 10 ]、算子积展开系数[ 8 ]和四点相关器[ 9 ]。例如,可以直接从系统的激发能量计算缩放维度,并且可以使用共形扰动进一步提高其精度[12]。第三,模糊球方案适用于各种三维CFT,包括Ising[1]、O(N)Wilson-Fisher、SO(5)非禁闭相变[10]、临界规范理论[10]和缺陷CFT[11]。最后,当哈密顿量经过合理微调时,模糊球正则化表现出令人难以置信的小有限尺寸效应。模糊球正则化的这些优势为探索高效率、高精度和全面的三维CFT提供了激动人心的机会。模糊球正则化考虑了一个微观量子哈密顿量,在连续球面空间中对具有多种口味的费米子进行建模,并将费米子投影到最低球面朗道能级 [ 1 , 6 , 13 ] 。与规则晶格模型相比,模糊球模型在紫外极限下严格保持了连续旋转对称性。得益于通过微调实现的极小的有限尺寸效应,精确对角化 (ED) 和密度矩阵重正则化群 (DMRG) 方法等数值算法在研究 3D Ising CFT 和 SO ( 5 ) 解禁相变的模糊球模型时非常有效。然而,这两种算法的计算成本最终会随着系统尺寸呈指数增长。更重要的是,对于涉及大量费米子口味的情况,ED 和 DMRG 的计算成本很快就会超过实际的资源和时间限制。在这些情况下,使用随时间多项式缩放的方法(例如量子蒙特卡罗 (QMC))来研究模糊球面上的模型将会很有帮助。本文旨在利用 3D Ising CFT 作为示例,展示 QMC 方法在研究模糊球面上的 3D CFT 中的应用。在参考文献 [ 13 , 14 ] 中可以找到有关模糊环面模型的类似讨论。与参考文献 [ 1 ] 中介绍的模糊球面 Ising 模型相比,我们在费米子中引入了一个额外的味道指数,这会导致 QMC 模拟没有符号问题。作为基准,我们提供了数值