智能手机已转换为便携式GNSS(全球导航卫星系统)接收器。具有数十亿此类设备记录的GNSS数据具有很大的科学研究潜力,并具有前所未有的时空分辨率。但是,目前访问大型GNSS智能手机数据的访问量是有限的,并且数据处理具有挑战性。Camaliot项目(机器学习技术在GNSS IOT数据融合中的应用)旨在解决这些问题,以促进众包GNSS数据的可用性,以进行天气预报和太空天气监测。Camaliot众包活动中大量的GNSS数据具有异质性的质量。为了应对此数据处理挑战,我们使用机器学习(ML)开发了一种自动数据选择算法。在这项研究中,比较了不同ML模型的分类性能。还检查了不同数据质量指标的重要性。初始结果表明,基于ML的分类器可以在广告系列的实际数据上获得95%的精度,而无需为质量指标设置明确的阈值。基于选定的智能手机GNSS数据,也进行了对流层参数估计实验。
图3。随着时间的推移,隐式感知得分的总体变化(顶部)。 阴影反映95%CI。 每个月(x轴),左y轴是平均温暖和能力,在[-1,1]范围内;正确的Y轴是按月按月拟人形态隐喻的百分比。 我们发现,随着时间的流逝,拟人化和温暖的隐喻在频率上的增加,而胜任的隐喻随着时间的流逝而减少。 具有统计学上显着的时间变化的主要隐喻(|𝑟|> 0。 3,𝑝<0。 05)(底部)。 每条线代表主要比喻的一个月患病率,该比喻是根据其拟人化的百分比(群集中拟人化的隐喻百分比)进行的。 我们发现拟人化的隐喻正在增加,而非拟人化隐喻随着时间的流逝而减少。 阴影反映了3个月的滚动平均值。随着时间的推移,隐式感知得分的总体变化(顶部)。阴影反映95%CI。每个月(x轴),左y轴是平均温暖和能力,在[-1,1]范围内;正确的Y轴是按月按月拟人形态隐喻的百分比。我们发现,随着时间的流逝,拟人化和温暖的隐喻在频率上的增加,而胜任的隐喻随着时间的流逝而减少。具有统计学上显着的时间变化的主要隐喻(|𝑟|> 0。3,𝑝<0。05)(底部)。每条线代表主要比喻的一个月患病率,该比喻是根据其拟人化的百分比(群集中拟人化的隐喻百分比)进行的。我们发现拟人化的隐喻正在增加,而非拟人化隐喻随着时间的流逝而减少。阴影反映了3个月的滚动平均值。
移动人群允许在时间和空间上收集大量数据,以养活我们的环境知识,并将这些知识与用户行为联系起来。但是,移动人群面临的一个重大挑战是保证为贡献用户保存隐私。众包系统中的隐私保存导致了两种主要方法,有时是合并的,分别是为了换取奖励的隐私,并利用了增强隐私的技术'''匿名化数据'。尽管相关,但我们声称这些方法不能充分考虑到用户对所提供数据的使用的容忍度,以便人群系统保证用户保证用户的预期机密水平,并促进了对不同任务的人群的使用。为此,我们利用了completeness属性,该属性可确保所提供的数据可用于所有者同意的所有任务,只要它们与其他来源进行分析,并且由于用户对用户的相关贡献而没有违反隐私的侵犯,并且更加严格的隐私要求。因此,挑战是要在分析数据时确保completentions在允许数据中用于尽可能多的任务,并促进所得知识的准确性。这是通过对数据分布敏感的聚类算法来实现的,该算法优化了数据重用和实用程序。使用SGX飞地的原型实现进一步允许运行实验,以表明我们的系统会导致合理的性能开销,同时为恶意对手提供强大的安全性。尽管如此,即使在有恶意的对手能够在服务器端起作用的恶意对手,我们至关重要的是,我们为此引入了by-design-by-design架构利用可信赖的执行环境。©2022 Elsevier B.V.保留所有权利。
奖励根据发现的漏洞的严重性,从250美元到5,000美元不等。为关键脆弱性提供了最高15万美元的特殊赏金,这些漏洞可能会对选定的系统和数据造成非凡的影响,从而强调了新加坡政府确保关键政府系统和宝贵个人数据的承诺。特别赏金针对领先技术公司的众包漏洞披露计划进行了基准测试。
监督分类在很大程度上取决于人类注释的数据集。然而,在诸如毒性分类之类的主观任务中,这些注释通常在评估者之间表现出较低的一致性。注释通常是通过采用多数投票来确定单个地面真相标签的方法来汇总的。在主观任务中,汇总标签将导致标签有偏见,并且会导致有偏见的模型,这些模型可以忽略次要意见。先前的研究已经阐明了标签聚合的陷阱,并引入了一些解决这个问题的实用方法。最近提出的多种注释模型,该模型可以预测每个注释者的个体标签,因此很容易受到样本很少的注释者的不良确定。此问题在众包数据集中加剧了。在这项工作中,我们为主观分类任务的文本(AART)提出了注释者意识表示表示。我们的方法涉及注释者的学习表示,允许探索注释行为。我们展示了我们对指标方法的改进,这些指标评估了限制单个注释者观点的绩效。在方面,我们证明了与Others相比,评估环境化注释者的模型公平性的公平指标。1
在过去二十年中,随着数字技术使在线社区和人群成为强大的创新源泉,开放式创新 (OI) 势头强劲 (Butticè & Ughetto, 2023 ; Füller 等人,2009 ; Jaribion 等人,2023 )。通过开放式创新,组织正在“开放”其以前封闭的创新流程,可能允许入站和出站流动 (Chesbrough, 2003 )。在开放式创新中,一种特别流行的入站知识流是众包——将任务或挑战传播给一群人的过程,而不是将其指定给特定的、通常是内部的“代理人”(Afuah & Tucci,2023 年;Brunswicker 等人,2017 年;Cappa,2022 年;Howe,2006 年、2008 年;Mack & Landau,2020 年;Pénin & Helmchen,2011 年;Piazza 等人,2022 年)。通过参与众包,公司努力从组织外部的大量个人那里收集知识(Dahlander & Gann,2010 年)。这使他们能够快速产生大量新想法;然而,大量的新想法使得识别最有价值的想法成为比以前更具挑战性的任务(Hoornaert 等人,2017 年;Majchrzak 和 Malhotra,2020 年)。虽然组织专家为想法评估增加了宝贵的领域知识,但他们也是一种稀缺且昂贵的资源(Bell 等人,2023 年;Toubia 和 Florès,2007 年)。作为回应,公司越来越多地参与众包投票,让大量成本低得多的众包工作者参与想法评估(Brabham,2008 年;Chen 等人,2020 年;Howe,2008 年;Majchrzak 和 Malhotra,2020 年)。最近的研究表明,众包投票可以产生与专家评估相当的表现(例如,Magnusson 等人,2016 年;Mollick 和 Nanda,2016 年)。允许人群对想法进行投票不仅有助于克服组织注意力缺陷(Chen 等人,2020 年;Piezunka 和 Dahlander,2015 年),还可以增加人群参与竞赛的热情(Chen 等人,2020 年),有助于新企业的生存和获得种子资金(Quignon,2023 年),并增加随后在众包活动中产生的想法的数量(Chen 和 Althuizen,2022 年)。到目前为止,在创新管理研究中观察到的人群由组织外部的人组成(例如,有兴趣进一步改进产品的主要用户、参与挑战的竞赛参与者或受雇完成工作的零工)。虽然它们可以帮助组织获取组织内部无法获得的特定知识或大量能力,但让人类参与众包工作,尤其是众包投票,是有局限性的。作为人类,众筹投票者容易受到偏见的影响,他们的评价可能受到注意力限制、羊群效应(早期的评分会影响随后的积极评分,因为选民会遵循最初的评价)或相互投票行为(贝尔
摘要 生成式人工智能的快速发展有可能重塑组织创新,从而引发人们对人类解决方案在增强智能新时代的作用的不确定性。我们发起了一项众包挑战,重点关注可持续的循环经济商业机会,比较 GPT-4 和人类解决方案在生成新颖且有价值的解决方案方面的能力。挑战吸引了来自不同行业的全球各类解决方案。300 名评估员从 234 个人类和人工智能解决方案中随机选择了 13 个进行评估,共计 3,900 对评估员-解决方案对。我们的研究结果表明,尽管人工智能解决方案提供了更多的环境和财务价值(可能是由于倾向于与其训练中看到的核心模式保持一致),但人类的输出被评为更具创新性,包括新颖性分布右尾的极端结果。我们使用自然语言处理技术对丰富的解决方案文本进行分析,发现人类和人工智能响应在语义差异指标上存在相当大的重叠,但人类仍然表现出比人工智能更大的语言细微差别。这项研究阐明了人工智能在增强人类众包解决复杂组织问题方面的前景,并为可能采用综合人机人工智能方法解决创新问题奠定了基础。关键词:生成式人工智能、法学硕士、ChatGPT、创新、众包、创意生成、评估、新颖性、价值 我们感谢哈佛商学院研究员 Justin Ho、市场与组织研究项目 (PRIMO) 研究员 Stella Jia,他们支持该项目的数据分析,以及哈佛大学创新科学实验室 (LISH) 实验室经理 Kate Powell,她为研究协议提供了监督和协调。我们也感谢哈佛大学数据到可操作知识实验室和人机交互小组的反馈。我们使用 GPT-4 来辅助写作。所有错误都是我们自己的。
抽象的认知扭曲是负偏见的思维模式和错误的自我污点,这是由于自己的内部推理而导致并导致逻辑错误。认知畸变会对心理健康产生不利影响,并可能导致心理健康障碍。本文属于一个更大的项目,该项目旨在提供用于检测和分类文本中认知扭曲的应用程序。由于没有用于该任务的公共数据集,因此拟议的工作的首次贡献在于提供一个开源标签的数据集,该数据集的14个认知畸变,该数据集由34370个条目组成,该数据集由34370个条目通过人群来源,用户调查表和从社交媒体中重新播放情绪数据集收集。数据集是与持牌心理学家合作收集的。我们使用幼稚的贝叶斯和count vectorizer以及不同的CNN,LSTM和DNN分类器实现了基线模型,以基于数据集对认知失真进行分类。我们使用表现最好的模型研究了不同单词嵌入的用法。依靠CNN的表现最好的模型,其嵌入式句子嵌入,F1得分为84%,用于分类认知扭曲。表现最佳的模型是在C- Journal中内置的,这是一种免费的日记帐和心情跟踪移动应用程序,可指出向用户的潜在思维扭曲。
摘要 众包具有巨大的潜力:例如,宏观任务众包可以为应对气候变化的工作做出贡献。宏观任务众包旨在利用群体智慧解决棘手问题等非平凡任务。然而,宏观任务众包需要大量劳动力,而且执行起来很复杂,这限制了它的效率、效果和用途。人工智能 (AI) 的技术进步可能会通过支持促进众包来克服这些限制。然而,要实现这一点,需要更好地理解 AI 在宏观任务众包促进方面的潜力。在这里,我们求助于舞蹈理论来发展这种理解。在宏观任务众包中,可供性帮助我们描述表征促进者和 AI 之间关系的行动可能性。我们遵循两阶段、自下而上的方法:初始开发阶段基于对学术文献的结构化分析。随后的验证和改进阶段包括两个观察到的宏观任务众包计划和六次专家访谈。从我们的分析中,我们得出了支持宏观任务众包中的 17 项促进活动的七种人工智能可供性。我们还确定了说明可供性的具体表现形式。我们的研究结果增加了学术界对宏观任务众包的理解,并推动了关于促进的讨论。此外,它们还帮助从业者确定将人工智能融入众包促进的潜在方法。这些结果可以提高促进活动的效率和宏观任务众包的有效性。
1 我们不使用 Berger 和 Packard 的基于潜在狄利克雷分析 (LDA) 的方法,因为它提取了最流行 (常见) 的主题 (维度),例如词束。LDA 方法在新产品创意的背景下可能会出现问题,因为 LDA 可能会将新颖和独特的词归类为“错误”。成功的新产品创意往往是新颖或独特的 (Dahl and Moreau 2002;Toubia 2006)。在众包创意竞赛中,在创意级别而不是主题级别捕捉非典型性的指标可能更胜一筹,因为它不会筛选出这些新颖或独特的创意。