3 共面波导谐振器的设计 8 3.1 材料和几何选择 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.3 共面波导几何形状. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................13 3.3.1 初步设计....................................................................................................................................................................................14 3.3.2 优化设计....................................................................................................................................................................................15
1-D PCM 棒的横截面积,[m 2 ] 比热,[J kgK ⁄ ] 运行成本,[$ yr ⁄ ] 电价,[$ kWhr ⁄ ] 管材成本,[$ kg ⁄ ] PCM 材料成本,[$ kg ⁄ ] 管内传热系数,[W m 2 K ⁄ ] 总时间步数 电导率,[W mK ⁄ ] 管总长度,[m ] 平准化能源成本,[$ MWh ⁄ ] PCM 潜能,[kJ kg ⁄ ] 径向网格数 管长网格数 努塞尔特数 普朗特数 传热速率,[W] 传热速率,[W] HTF 总质量流速,[kg s ⁄ ] 环内半径,[m] 环状几何中的移动凝固前沿,[m]环形圆柱体 PCM 的热阻,[ m ] 圆柱体 PCM 内的热阻,[ KW ⁄ ] 导热流体内的热阻,[ KW ⁄ ] 雷诺数 温度,[ ℃ ] 边界冷却温度,[ ℃ ] 相变材料熔化温度,[ ℃ ] 管与圆柱体 PCM 之间的界面温度,[ ℃ ] 管内导热流体的速度,[ ms ⁄ ] 管壁厚度,[ mm ] 壳体厚度,[ mm ] 一维 PCM 棒的长度,[ m ] 每天运行小时数,[ hr ] 凝固时间,[ hr ] 移动凝固前沿,[ m ] 设备总寿命,[ yr ] 环形圆柱体 PCM 的轴长,[ m ] 两个坐标系之间的凝固前沿比率 密度,[ kg m 3 ⁄ ] 粘度,[ Pa ∙s ] 潜能储存系统的有效性矩形几何结构显热能分数因子 圆柱形几何结构显热能分数因子 差值或增量步长 泵效率
雷克瑟姆大学研究在线期刊文章 针对无碳在用住宅开发的微电网优化设计:基于英国的案例研究 Hewitt, J., Sprake. D., Vagapov, Y. 和 Monir, S. 本文由 Springer Link 发布。本文的最终版本可在以下位置获取:https://link.springer.com/article/10.1007/s10668-024-04695-2#citeas 。出版商允许使用以下链接在线查看(但不能打印或下载)本文:https://rdcu.be/dzBlB 推荐引用:Hewitt, J., Sprake. D., Vagapov, Y. 和 Monir, S. (2024),‘针对无碳在用住宅开发的微电网优化设计:基于英国的案例研究’,环境、发展和可持续性。号码:10.1007/s10668-024-04695-2
1 马来西亚工艺大学电气工程学院电力工程系,UTM,Skudai 81310,柔佛州,马来西亚; cheewei@utm.my 2 库法大学工程学院电气工程系,Kufa 54001,伊拉克 3 先进闪电、电力和能源研究 (ALPER),电气和电子工程系,工程学院,马来西亚博特拉大学,Serdang 43400,雪兰莪,马来西亚; hussain_mhammad@uomustansiriyah.edu.iq 4 Mustansiriyah 大学计算机工程系,巴格达 14022,伊拉克 5 工程技术学院/纳杰夫,Al-Furat Al-Awsat 技术大学,纳杰夫 31001,伊拉克; coj.dfr@atu.edu.iq * 通讯地址:ameeralikareem451984@gmail.com 或 ameerkareim@graduate.utm.my 或 ameera.abbas@uokufa.edu.iq (AAKA-S.);shahrin@fke.utm.my (SMA)
提高充电电压并采用高容量的阴极(如锂钴氧化物(LCO))是扩大电池容量的有效策略。高压将揭示主要问题,例如电解质的低界面稳定性和弱电化学稳定性。从物质基因工程设计的角度设计高性能固体电解质至关重要。在这种情况下,构建了稳定的SEI和CEI界面层,并通过聚合物分子工程产生了4.7 V高压固体共聚物电解质(PAFP)。As a result, PAFP has an exceptionally broad electrochemical window (5.5 V), a high Li + transference number (0.71), and an ultrahigh ionic conductivity (1.2 mS cm − 2 ) at 25 ° C. Furthermore, the Li||Li symmetric cell possesses excellent interface stability and 2000 stable cycles at 1 mA cm − 2 .LCO | PAFP | LI电池在1200个周期后具有73.7%的保留能力。此外,它在高充电电压为4.7 V时仍然具有出色的循环稳定性。上面的这些特性还允许PAFP在高负载下稳定运行,显示出极好的电化学稳定性。此外,提出的PAFP提供了对高压抗性固体聚合物电解质的新见解。
其优化设计、独家使用高品质原材料以及结合 SUNLIGHT 在设计和制造先进技术电池(例如用于潜艇和鱼雷的)方面的丰富专业知识,确保了我们提供的每种能源解决方案的可靠性和效率。此外,最先进的制造工艺可提供具有高能量密度、卓越性能和耐用性的优质产品。
逐步淘汰航运业的化石燃料对于减少温室气体排放至关重要。基于可再生能源的合成燃料是可持续海运业的一个有前途的选择,可再生甲醇是最广泛考虑的能源载体之一。然而,可再生甲醇的供应仍然有限,而且与传统燃料相关的成本明显高于传统燃料,这也是因为燃料合成必须依赖二氧化碳作为资源。通过使用船上碳捕获,可以避免燃烧过程中二氧化碳的释放,这种闭式循环减少了对碳源的需求。本文通过分析使用内燃机和相连的燃烧前和燃烧后碳捕获技术的整体船舶能源系统来研究这种情况。通过建立一个混合整数优化框架来优化船舶推进系统的设计和运行,研究了这些技术对完全可再生能源系统的技术经济性能的影响。所选案例研究的推进需求包括在波罗的海运营的渡轮的典型运行概况。将捕获情况与仅基于可再生甲醇的系统进行比较,可以发现封闭式碳循环系统具有显著的成本优势。基线情景的年成本降低了近 20%,燃烧后情况下的总捕获率为 90%,燃烧前情况下的总捕获率为 40% 左右。广泛的敏感性分析表明,这些成本优势在各种技术和经济边界条件下都具有稳健性。在燃烧前情况下,工艺热需求减少与发动机热供应增加相结合可能会使捕获率超过 90%。结果表明,将可再生燃料与船上碳捕获相结合可以为成本效益高、可持续的航运创造机会。
摘要 发电机的转速影响产生的频率和电压,而这种变化会影响负载侧。为此,我们需要一种能够优化微水力发电性能的控制设备。因此,我们需要一种通过应用负载频率控制 (LFC) 来优化微水力发电性能的技术。LFC 通过实施超导磁能存储 (SMES) 和电容能存储 (CES) 而设计,此应用将提供功率补偿以减少甚至消除由消费者电力负载变化引起的频率振荡。为了获得最佳的微水力发电性能,必须为 SMES 和 CES 设置正确的参数。本研究中的 SMES 和 CES 参数调整提出使用 Bat 算法。该算法使用的目标函数是优化积分时间绝对误差 (ITAE)。对于性能分析,在负载变化的情况下测试系统,然后分析调速器、涡轮机和系统频率响应。为了测试系统的可靠性,本研究采用了几种控制、SMES、CES 与基于比例、积分、微分 (PID) 的传统控制相结合的方案。正确的控制参数将更优化地改善系统性能。最佳系统性能可以从调速器、涡轮机的响应和频率的最小超调以及系统切换到稳定状态的快速稳定时间中看出。