自第一例 COVID-19 病例报告以来,已经过去了近 4 年。迄今为止,该疾病已感染近 6.5 亿人,夺走了 600 多万人的生命。该疾病深刻影响了世界的地缘政治、社会经济和公共卫生结构,并且仍在继续影响。人们很快意识到,有效的疫苗是解决这场灾难的唯一办法,在这场大流行开始后不到一年的时间里,几个研究小组就开发出了针对 SARS-CoV-2 的疫苗。2020 年 12 月开始的疫苗接种运动在数月内达到了前所未有的规模,在近两年内,全球已分发了超过 130 亿剂疫苗,68.5% 的世界人口至少接种了一剂 COVID-19 疫苗。COVID-19 疫苗已被证明是控制大流行的有效工具。但尽管 COVID-19 疫苗已被证明有效且安全,但它最初并没有
抽象准确的功率损失估计对于有效的电力系统操作和计划至关重要。传统方法依赖于假设,导致不准确。这项研究采用了多层馈送神经网络(MFNN)来开发一个模型,该模型估计电力线中的真实和反应性损失。负载流技术用于获得训练多种模型的变量。调整神经元数并比较其他模型的性能指标后,选择了所需的模型。使用MATPOPTOR对118个BUS IEEE测试网络进行建模。Levenberg-Marquardt反向传播算法对生成数据训练了该模型。结果表明,25-神经元模型表现最好,在1000个时期达到了最小平方误差(0.00047543)。相关系数显示20个神经元和25个神经元模型的值为0.9999。分析确定了25个基于训练的模型是预测功率损耗的最准确的模型。据观察,25-神经元模型以1000个时期的最高相关系数(0.99999)达到了最佳性能(0.99999)和最小平方误差(0.00047543)。这项研究证明了ANN在估计传输线中功率损失方面的有效性。推荐的25个基于基于Neuron的训练有素的模型提供了研究模型的最佳预测,从而提高了电力系统效率和计划。关键字:神经网络,神经元,负载流,Levenberg-Marquardt,Newton Raphson
•犹他州能源开发办公室 - 媒体成员•UTE印度部落成员•怀俄明州 - 怀俄明州能源授权委员会成员•加尔菲尔德县,库姆 - 梅夫成员•莫法特县,莫法特县,梅萨成员 - 梅萨成员•梅萨县,梅萨县,科罗拉多州立大学成员•莫里奥·布兰科县,穆尔·布兰科县 - 穆尔·莫伊·莫伊·米尔·米尔斯•纽约市 - 新米尔斯 - 新米尔·米尔·米尔·梅尔·梅尔·伯爵>- 谅解备忘录成员•墨西哥巴哈州加利福尼亚州<部门经济发展和旅游业 - 谅解备忘录成员•南部Ute Indian Tribe-Mou成员•Jicarilla Apache-nation-Mou•艾伯塔省省(谅解备忘录)•UT Duchesne County,UT•Uintah County,UT
收到:2024年8月8日修订:2024年9月10日接受:08年10月8日发布:2024年10月30日摘要-3D打印使用计算机辅助设计和分层来创建三维对象。许多研究人员正在探索3D打印的不同材料。其中一种途径是由于其可生物降解性和更好的机械性能,用聚合物材料加强天然纤维。这项研究的主要目标是探索使用融合沉积建模(FDM)的香蕉纤维与聚乳酸(PLA)进行3D打印的使用。本文研究了天然纤维增强对机械特性的影响,此外,还研究了FDM过程变量(例如喷嘴尺寸,填充图案,层厚度和喷嘴温度)对机械性能的影响。为了确定这些过程因子的重要性,使用方差分析(ANOVA),并使用Taguchi L16来设计实验。在这项研究中,为了执行机械拉伸测试和弯曲测试,根据ASTM标准从香蕉纤维/PLA生物复合材料印刷样品。用0.8毫米喷嘴尺寸,立方填充图案,0.3毫米厚度(200°C)打印的项目显示弯曲强度,拉伸强度,拉伸模量和弯曲强度的最大值。在3D制造的复合测试样品中,3%的香蕉纤维组成显示最大模量为985 MPa,最大弯曲强度最大为151 MPa,最大32 MPa抗拉力强度和最大2452 MPA MPA弯曲模量。断裂表面的SEM显微照片显示界面粘结和纤维拉出。
研究了Sn-Bi-Cu、Sn-Bi-Ni、Sn-Bi-Zn、Sn-Bi-Sb合金的超塑性变形行为。本研究旨在测定Sn-Bi二元合金的应变速率敏感性指数m。在不同横梁速度下进行25、40、60和80 ℃拉伸试验,测定指数m。结果表明,指数m随Bi浓度和试验温度的增加而增大。在60和80 ℃时,Sn-Bi合金的指数m均超过了3.0,这是超塑性变形行为的阈值。研究发现,Sn-Bi共晶组织对亚共晶Sn-Bi合金的超塑性变形有显著的影响。