S+C 集团参与的最具挑战性的项目之一是研究和开发一种新材料,以使 Midrex ® 重整器和 HyL ® PGH 能够以更高的速度运行,而在此之前,这些材料受限于可用材料的冶金学约束。利用集团的协同作用、在极高温度应用合金开发过程中获得的知识以及多学科方法,S+C 向市场推出了最新一代合金 Centralloy ® 60 HT D 和 Centralloy ® HT E。使用铝作为合金元素的结果很简单,但这并不反映实现所需的最高抗氧化和抗蠕变性的技术复杂性。这两种合金的优异性能为 DR 工厂的运行设定了新的极限。
虽然TiB 2 基复合材料的各种优异性能及制备方法已被广泛研究,但是其中子屏蔽性能尚未受到足够的重视。本文将对先前制备的TiB 2 -Al复合材料的中子屏蔽性能进行研究。利用光中子源装置对厚度为10 mm 的试验样品进行中子辐照试验。TiB 2 基含硼复合材料的平均热中子屏蔽率为17.55%,且屏蔽率随BN含量的增加而增大。复合材料的热中子宏观截面总体呈现稳定趋势,当BN含量为10%时,热中子宏观截面达到最大值7.58cm -1 。随着BN含量的增加,热中子注量率呈现逐渐减小的趋势。
具体而言,该模型基于适用于脑电的图结构作为输入,在非欧几里德空间中准确表示脑电电极的分布并充分考虑电极间的空间相关性。此外,利用双分支架构将原始脑电信号转化为时空图表示和空谱图表示,提取时空谱多维特征信息。最后,设计注意力机制与全局特征聚合模块,并结合图卷积自适应地捕捉脑电信号在各维度上的动态相关性强度与有效特征。在多个不同的公开脑机接口数据集上的一系列对比实验与消融实验证明了所提方法的优异性。值得一提的是,该模型是一个通用的脑电信号分类框架,适用于基于脑电研究的情绪识别、睡眠分期等领域,并且有望在现实生活中运动想象康复的医学领域得到应用。
摘要:碳纳米管 (CNT) 的优异性能在引入橡胶基质时也呈现出一些局限性,特别是当这些纳米颗粒应用于高性能轮胎胎面胶料时。由于范德华相互作用,它们倾向于聚集成束,CNT 对硫化过程的强烈影响以及填料-橡胶相互作用的吸附性质加剧了橡胶-CNT 化合物的能量耗散现象。因此,它们在滚动阻力方面的预期性能受到限制。为了克服这三个重要问题,CNT 已用含氧基团和硫磺进行表面改性,从而改善了这些橡胶化合物在轮胎胎面应用中的关键性能。通过结合机械、平衡膨胀和低场核磁共振实验,对这些使用功能化 CNT 作为填料的新材料进行了深入表征。该研究的结果表明,通过在CNT表面引入硫,在橡胶基质和纳米颗粒之间形成共价键,对橡胶化合物的粘弹行为和网络结构产生积极的影响,降低了60◦C时的损耗因子(滚动阻力)和非弹性缺陷,同时增加了新化合物的交联密度。
摘要:聚对二甲苯 (PC) 因其高机械强度和生物相容性等优异性能在过去几年中引起了极大的关注。当用作柔性基板并与高κ电介质如氧化铝 (Al 2 O 3 ) 结合时,Al 2 O 3 /PC 堆栈在生物医学微系统和微电子等领域的各种应用中变得非常引人注目。对于后者,尤其需要氧化物的原子层沉积,因为它可以沉积高质量和纳米级氧化物厚度。在本文中,实现了在 15 μ m 厚的 PC 层上进行 Al 2 O 3 的原子层沉积 (ALD) 和电子束物理气相沉积 (EBPVD),并通过 X 射线光电子能谱结合原子力显微镜研究它们对 Al 2 O 3 /PC 所得堆栈的影响。我们发现,基于 ALD 的 Al 2 O 3 /PC 叠层可产生纳米柱状表面,而基于 EBPVD 的 Al 2 O 3 /PC 叠层可产生预期的光滑表面。在这两种情况下,Al 2 O 3 /PC 叠层都可以轻松地从可重复使用的 SiO 2 基板上剥离,从而产生柔性 Al 2 O 3 /PC 薄膜。这些制造工艺经济、产量高,适合大规模生产。尽管 ALD 在半导体行业特别受欢迎,但我们发现 EBPVD 更适合实现用于微电子和纳米电子的 Al 2 O 3 /PC 柔性基板。
摘要:基于规则的微电网调度策略在过去二十年中受到了广泛关注。然而,最近的大量文献已确凿地表明,在优化微电网规模的同时,优化运营调度具有诸多好处。这通常被称为微电网设计和调度协同优化 (MGDCO)。然而,据可查明,文献中所有现有的 MGDCO 模型都考虑了 24 小时解析的日前时间范围,以实现相关的最佳能源调度过程。也就是说,在更广泛的相关文献中,通常没有关于多日时间范围内的智能、前瞻性能源调度策略。为此,本文介绍了一种新颖的 MGDCO 建模框架,该框架将基于套利感知线性规划的多日能源调度策略集成到基于元启发式的标准微电网投资规划流程中。重要的是,该模型通过生成考虑三天内情景的最佳调度解决方案,有效地延长了微电网投资规划问题中主流能源调度优化的时间范围。基于从测试案例微电网获得的数值模拟结果,验证了所提出的基于优化的调度策略在微电网规模确定过程中的有效性,同时保留了计算的可处理性。具体而言,将使用制定的 72 小时调度策略的所提出的投资规划框架与照常的 MGDCO 方法进行比较,结果表明它可以将微电网的全寿命成本降低高达 8%。所提出方法的优异性能在很大程度上可归因于有效利用了电表后锂离子电池存储,从而提高了整体系统的灵活性。
在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息
在竞争激烈的全球市场上,具有极端且通常不寻常性能组合的金属材料一直供不应求。当前最先进的金属材料,如镍基高温合金,正在接近其发展的物理极限,因为未来应用所需的工作温度接近或超过了它们的熔点。能源和交通等社会影响重大领域的进步要求探索和开发新型材料解决方案,以在更高温度下改善结构或功能性能。先进难熔合金,特别是难熔金属间复合材料 (RMIC),如 Nb-硅化物原位复合材料、Mo-硅化物基合金、难熔高熵合金 (RHEA)、难熔复合浓缩合金 (RCCA) 和难熔高温合金 (RSA),作为潜在的结构材料,其使用温度远超镍基高温合金,引起了广泛关注 [1-5]。其中一些合金的优异性能使它们成为当前和未来广泛应用的有希望的候选材料。这些先进材料基于 13 种难熔金属,即钨、铼、锇、钽、钼、铌、铱、钌、铪、铑、钒、铬和锆,其熔点介于 1855 ◦ C(锆)和 3422 ◦ C(钨)之间。它们还可能包含其他元素,例如铝、硅和钛,旨在改善设计所需的性能(主要是机械和/或环境性能)。元素周期表中不同族的难熔金属的性能差异很大。难熔金属及其合金的共同特性是熔点高、高温强度高、对液态金属具有良好的耐腐蚀性。难熔金属在极高的温度下也能保持稳定的蠕变变形,部分原因是它们的熔点高。难熔金属可加工成线材、锭材、钢筋、板材或箔材。它们用途广泛,包括热金属加工、熔炉、照明、润滑剂、核反应控制棒、化学反应容器和空间核能系统。它们也是航空航天应用的关键高温材料。此外,难熔金属还可用作合金添加剂——例如,用于钢、高温合金和高熵合金 (HEA)。最后,应该提到的是,大多数难熔金属都具有生物相容性,为开发用于植入应用的生物材料铺平了道路。低温加工性差和高温氧化性差是大多数难熔金属和合金的缺点。通过使用特定的难熔金属和合金添加剂组合可以改善氧化性能。与环境的相互作用会显著影响它们的高温蠕变强度。这些金属和合金在高温下的应用通常需要使用保护气氛或涂层。最近,RMIC、RHEA、RCCA 和 RSA 已成为深入研究的主题,其中许多研究涉及用于航空航天应用的新型超高温材料的设计。本期特刊发表的论文提供了新的信息