本文提出了一种非常快速的数值方法来模拟熔池凝固产生的微观结构,包括柱状枝晶晶粒和从熔体中成核的等轴晶粒的生长竞争。为了减少计算时间,提出了一种升级策略,该策略不是单独考虑每个枝晶,而是根据物理信息确定枝晶生长速度来定义平均凝固前沿。所提出的方法还依赖于枝晶的优选生长方向和有利取向的晶粒标准来确定哪些晶粒在竞争中幸存下来。显著减少自由度总数的关键贡献之一是使用 Voronoi 镶嵌而不是规则网格进行数值实现。结果已与实验数据以及相场和细胞自动机模拟进行了比较。模拟的微观结构与使用细胞自动机获得的微观结构相似,而计算成本却大大降低。此外,还提供了三维模拟的收敛分析,其热条件对应于金属增材制造,以展示如何在实践中使用本研究。
成人和儿童肥胖的患病率正在增加,预计到2035年,有15亿多人将生活在肥胖症中。1在全球范围内影响超过8亿人的慢性肾脏疾病(CKD),无论是患病率还是作为死亡的主要原因,都在上升。2,3这些条件直接和间接相互联系。肥胖是糖尿病和高血压发展的驱动力,这是大多数国家的CKD的两个主要原因。4此外,肥胖本身可能直接导致CKD,因为脂肪组织通过脂肪因子会影响肾脏,脂肪因子可能诱导CKD。4但是,需要进一步理解。使用优化的饮食5和运动是优选但很复杂的肥胖症,而且体重的减轻通常不会持续。近年来,我们在评估代谢手术或药理学干预措施的试验中看到了积极的结果,6所维持的重量大幅减少(对于药物干预措施,只要继续进行)。尤其是,单独或与其他激素(作为双重或三重激动剂)的新药物基于泌尿素激素,导致没有糖尿病的肥胖症患者的体重减轻高达25%,而在
描述AGV和主控制器之间通信的标准,因此是将运输系统整合到使用合作运输车辆的连续过程自动化中的基础。通过提高车辆自主权,过程模块和界面以及优选的事件控制命令链的刚性序列,提高了灵活性。根据需要的信息(例如,订单信息),缩短了由于高“插头和播放”功能而导致的实施时间,通常是由中央服务提供的,通常是有效的。车辆应能够与制造商独立于制造商进行实施,并考虑到职业安全的要求。通过使用统一的,总体的协调与所有运输车辆,车辆型号和制造商的相应逻辑,通过使用统一的,总体的协调来降低和增加系统的“插头”功能。使用车辆控制和协调水平之间的共同接口提高制造商的独立性。通过在专有主控制和上级主控制之间实施垂直通信的专有DTS库存系统的集成(参见图1)。
成人和儿童肥胖的患病率正在增加,预计到2035年,有15亿多人将生活在肥胖症中。1在全球范围内影响超过8亿人的慢性肾脏疾病(CKD),无论是患病率还是作为死亡的主要原因,都在上升。2,3这些条件直接和间接相互联系。肥胖是糖尿病和高血压发展的驱动力,这是大多数国家的CKD的两个主要原因。4此外,肥胖本身可能直接导致CKD,因为脂肪组织通过脂肪因子会影响肾脏,脂肪因子可能诱导CKD。4但是,需要进一步理解。使用优化的饮食5和运动是优选但很复杂的肥胖症,而且体重的减轻通常不会持续。近年来,我们在评估代谢手术或药理学干预措施的试验中看到了积极的结果,6所维持的重量大幅减少(对于药物干预措施,只要继续进行)。尤其是,单独或与其他激素(作为双重或三重激动剂)的新药物基于泌尿素激素,导致没有糖尿病的肥胖症患者的体重减轻高达25%,而在
摘要:多层打印电路板(PCB)不仅可以以传统的方式,而且可以在附加性上产生。传统制造和添加剂制造都可能导致电子组件内部结构的看不见缺陷,最终导致设备的自发故障。无论是在重要结构中使用哪种技术来生产PCB,质量控制对于确保组件的可靠性很重要。制造电子组件结构的无损测试(NDT)可以帮助确保设备的质量。对产品结构可能变化的研究可以帮助识别缺陷的原因。不同类型的制造技术可以导致不同类型的可能缺陷。因此,使用几种非破坏性检查技术可以优选用于检查电子组件。在本文中,我们介绍了各种NDT技术的比较,以评估使用传统和增材制造技术生产的PCB质量。研究PCB的内部结构的方法是基于几种最可靠和广泛使用的技术,即声学显微镜,主动热力学和X射线照相。所研究的所有技术都具有其优势和缺点,因此,如果要生产高可靠性产品,使用多种技术进行测试以检测各种类型的缺陷并确定其参数是有利的。
1.2. 背景。随机环境中的定向聚合物是非平衡统计力学中无序系统的典型模型,自 20 世纪 80 年代以来得到了广泛的研究。在这里,我们不会试图回顾大量的文献,而是参考优秀的书籍 [ 19 ] 及其引用的参考文献。该模型的一个显着特征是在所谓的低温状态下的局部化现象,这是一种物理上有趣的状态,其中聚合物路径被限制在能量上有利的一小组状态中。在高温状态下,路径表现出与布朗运动相同的扩散性,这更容易分析。当温度较低时,路径预计会表现出超扩散性,同时局限于某个优选区域。虽然这种行为众所周知很难量化,但近年来数学研究取得了重要进展。这涉及端点位移和自由能涨落的研究,属于 1 + 1 KPZ 普适性类别 [ 2 , 5 , 6 , 11 , 12 , 13 , 14 , 25 , 26 , 28 , 37 , 38 , 40 , 41 ],也涉及局域化行为的定量分析 [ 4 , 8 , 9 , 10 , 16 , 18 , 20 , 21 , 22 , 23 , 29 ]。
Öz摘要在这项研究中,硼nitrür量子点(BNKN) /还原的氧化石墨烯(RGO)杂化结构的合成,这是一种用于超级电容器的新电极材料。bnkn具有与氧化石墨烯(GO)相同的晶体结构,因此优选BNKN@RGO杂种结构显示出非常好的电气性能。hekzagonal硼nitrür(H-BN)基于纳米酰基的杂种材料,BNKN,热稳定性和电导率原因近年来出于原因,而Grafen在超耐效率研究中通常更喜欢特定的表面积。此外,在该结构中添加不同的纳米利酶以提高图形的电容值是发展碳材料的电子发射器性能。因此,通过考虑在超级电容器中使用的混合电极电化学活性来测量特定的电容值将增加电化学活性。由于电化学研究的结果,在BNKN@RGOH杂交结构的5 mVs-1筛选速率下获得207.5 f/g高电容值。在1,000个周期中还进行了88.9%的环状稳定性性能。
摘要 - 该论文考虑了通过元强化学习的无人机(UAV)的轨迹设计问题。假定无人机可以在不同的方向上移动以探索特定区域并从该区域的地面节点(GNS)收集数据。无人机的目标是到达目的地,并最大程度地提高轨迹轨迹期间收集的总数据,同时避免与其他无人机发生碰撞。在有关无人机轨迹设计的文献中,香草学习算法通常用于训练特定于任务的模型,并为GNS的特定空间分布提供了近乎最佳的解决方案。但是,当GNS的位置变化时,此方法需要从头开始重新审查。在这项工作中,我们提出了一个元加强学习框架,该框架结合了模型 - 静态元学习方法(MAML)。而不是训练任务特定模型,我们为GNS和不同的通道条件的不同分布进行了共同的初始化训练。从初始化中,适应具有不同GN分布和通道条件的不同任务只需要几个梯度下降。此外,我们还探讨了何时优选提出的MAML框架,并且可以优于比较算法。
•使用定量,定性或混合方法独立设计和实施整个部门的复杂研究和计划评估项目,并与代理优先级保持一致。•管理和协调由研究和程序员组成的研究团队。•审查,总结和传达与研究项目相关的科学和民族文献的发现。•设计研究方案。•根据需要开发和维护数据收集工具,系统和数据库。•根据需要监督和管理员工的现场工作和数据收集工作。•维护分析文件,包括成绩单,现场注释,编程代码,分析输出以及具有研究结果的表。•使用先进的分析方法(包括回归分析)和统计软件包(例如SPS)对定量数据进行监督和进行分析。•与利益相关者群体互动以实施研究项目,解释数据并制定建议。•通过演示和书面产品在多个层面和各种背景下向利益相关者传达发现。要求教育:从认可的大学或大学毕业,并获得了适合该职位的学科的硕士学位。优选博士学位。经验:适合该职位的领域的三(3)年全日制经验。
有很多现实世界的黑框优化概率需要同时优化多个标准。然而,在多目标优化(MOO)问题中,确定整个帕累托阵线需要过度的搜索成本,而在许多实际情况下,决策者(DM)只需要在帕累托最佳解决方案集中的特定解决方案。我们提出了一种贝叶斯操作方法(BO)方法,以使用昂贵的目标功能识别MOO中最喜欢的解决方案,其中DM的贝叶斯偏好模型是根据两种称为成对偏好和改进请求的Supperions类型的交互方式自适应估算的。要探索最优选的解决方案,我们定义了一个采集函数,在该函数中,在观察函数和DM偏好中的不确定性都已合并。为了最大程度地减少与DM的相互作用成本,我们还为偏好估计提出了一种主动学习策略。我们通过基准功能优化和机器学习模型的高参数优化问题来证明我们提出的方法的有效性。